Your browser doesn't support javascript.
loading
Divalent cations are dispensable for binding to DNA of a novel positively charged olivomycin A derivative.
Beniaminov, Artemy D; Dezhenkova, Lyubov G; Mamaeva, Olga K; Shchyolkina, Anna K; Tevyashova, Anna N; Kaluzhny, Dmitry N; Shtil, Alexander A.
Afiliação
  • Beniaminov AD; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
  • Dezhenkova LG; Gause Institute of New Antibiotics, Moscow, Russian Federation.
  • Mamaeva OK; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
  • Shchyolkina AK; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
  • Tevyashova AN; Gause Institute of New Antibiotics, Moscow, Russian Federation.
  • Kaluzhny DN; Mendeleev University of Chemical Technology, 9 Miusskaya Square, Moscow, Russian Federation.
  • Shtil AA; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation.
PLoS One ; 13(2): e0191923, 2018.
Article em En | MEDLINE | ID: mdl-29420558
ABSTRACT
The current model of binding of the antitumor antibiotic olivomycin A (1) to GC-rich DNA regions presumes that coordination of the magnesium divalent cation with drug dimers is necessary for binding of 1 into the minor groove of the DNA duplex. Previously we have synthesized the derivatives of 1 termed 'short acid' (2) and its N,N-dimethylaminoethylamide (3). The latter compound demonstrated an improved tolerance in vivo compared to 1 and good therapeutic potency in animal models. We herein report that compound 3 is able to form stable complexes with DNA in the absence of Mg2+, in striking contrast to 1 whose binding to the DNA absolutely requires Mg2+. The mode of binding of 3 to DNA is similar in the presence or absence of Mg2+ as determined by circular dichroism. The affinity to DNA of 3 in Mg2+-free solution was similar to that of 1 or 3 in the presence of Mg2+ at low ionic strength. Non-electrostatic contributions to total free energy of binding of 1 and 3 to DNA were comparable for Mg2+-free complexes. Our data strongly suggest that electrostatic interaction of the positively charged 3 can compensate for the absence of divalent ions in complexes with DNA. This new property of the olivomycin A derivative expands the mechanistic knowledge of the modes of interaction with DNA of small molecular weight drug candidates.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Cátions Bivalentes Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Cátions Bivalentes Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2018 Tipo de documento: Article