Your browser doesn't support javascript.
loading
Correcting for missing and irregular data in home-range estimation.
Fleming, C H; Sheldon, D; Fagan, W F; Leimgruber, P; Mueller, T; Nandintsetseg, D; Noonan, M J; Olson, K A; Setyawan, E; Sianipar, A; Calabrese, J M.
Afiliação
  • Fleming CH; Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, Virginia, 22630, USA.
  • Sheldon D; Department of Biology, University of Maryland College Park, College Park, Maryland, 20742, USA.
  • Fagan WF; Conservation International Indonesia, Marine Program, Jalan Pejaten Barat 16A, Kemang, Jakarta, DKI Jakarta, 12550, Indonesia.
  • Leimgruber P; College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, 01003-9264, USA.
  • Mueller T; Department of Computer Science, Mount Holyoke College, South Hadley, Massachusetts, 01075, USA.
  • Nandintsetseg D; Department of Biology, University of Maryland College Park, College Park, Maryland, 20742, USA.
  • Noonan MJ; Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, Virginia, 22630, USA.
  • Olson KA; Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany.
  • Setyawan E; Department of Biological Sciences, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt (Main), Germany.
  • Sianipar A; Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany.
  • Calabrese JM; Department of Biological Sciences, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt (Main), Germany.
Ecol Appl ; 28(4): 1003-1010, 2018 06.
Article em En | MEDLINE | ID: mdl-29450936
Home-range estimation is an important application of animal tracking data that is frequently complicated by autocorrelation, sampling irregularity, and small effective sample sizes. We introduce a novel, optimal weighting method that accounts for temporal sampling bias in autocorrelated tracking data. This method corrects for irregular and missing data, such that oversampled times are downweighted and undersampled times are upweighted to minimize error in the home-range estimate. We also introduce computationally efficient algorithms that make this method feasible with large data sets. Generally speaking, there are three situations where weight optimization improves the accuracy of home-range estimates: with marine data, where the sampling schedule is highly irregular, with duty cycled data, where the sampling schedule changes during the observation period, and when a small number of home-range crossings are observed, making the beginning and end times more independent and informative than the intermediate times. Using both simulated data and empirical examples including reef manta ray, Mongolian gazelle, and African buffalo, optimal weighting is shown to reduce the error and increase the spatial resolution of home-range estimates. With a conveniently packaged and computationally efficient software implementation, this method broadens the array of data sets with which accurate space-use assessments can be made.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ecologia Tipo de estudo: Evaluation_studies Limite: Animals Idioma: En Revista: Ecol Appl Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ecologia Tipo de estudo: Evaluation_studies Limite: Animals Idioma: En Revista: Ecol Appl Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos