Your browser doesn't support javascript.
loading
Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models.
Belk, Aeriel; Xu, Zhenjiang Zech; Carter, David O; Lynne, Aaron; Bucheli, Sibyl; Knight, Rob; Metcalf, Jessica L.
Afiliação
  • Belk A; Department of Animal Sciences, Colorado State University, Fort Collins, CO 80525, USA. aeriel.belk@colostate.edu.
  • Xu ZZ; Department of Pediatrics, University of California, La Jolla, San Diego, CA 92093, USA. zhx054@ucsd.edu.
  • Carter DO; Laboratory of Forensic Taphonomy, Forensic Sciences Unit, Division of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA. david.carter@chaminade.edu.
  • Lynne A; Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA. aml027@shsu.edu.
  • Bucheli S; Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77340, USA. srb009@shsu.edu.
  • Knight R; Department of Pediatrics, University of California, La Jolla, San Diego, CA 92093, USA. robknight@ucsd.edu.
  • Metcalf JL; Department of Computer Science and Engineering, University of California, San Diego, CA 92037, USA. robknight@ucsd.edu.
Genes (Basel) ; 9(2)2018 Feb 16.
Article em En | MEDLINE | ID: mdl-29462950
Death investigations often include an effort to establish the postmortem interval (PMI) in cases in which the time of death is uncertain. The postmortem interval can lead to the identification of the deceased and the validation of witness statements and suspect alibis. Recent research has demonstrated that microbes provide an accurate clock that starts at death and relies on ecological change in the microbial communities that normally inhabit a body and its surrounding environment. Here, we explore how to build the most robust Random Forest regression models for prediction of PMI by testing models built on different sample types (gravesoil, skin of the torso, skin of the head), gene markers (16S ribosomal RNA (rRNA), 18S rRNA, internal transcribed spacer regions (ITS)), and taxonomic levels (sequence variants, species, genus, etc.). We also tested whether particular suites of indicator microbes were informative across different datasets. Generally, results indicate that the most accurate models for predicting PMI were built using gravesoil and skin data using the 16S rRNA genetic marker at the taxonomic level of phyla. Additionally, several phyla consistently contributed highly to model accuracy and may be candidate indicators of PMI.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Clinical_trials / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Genes (Basel) Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Clinical_trials / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Genes (Basel) Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Suíça