Your browser doesn't support javascript.
loading
Fabrication of ultrathin MIL-96(Al) films and study of CO2 adsorption/desorption processes using quartz crystal microbalance.
Andrés, Miguel A; Benzaqui, M; Serre, C; Steunou, N; Gascón, I.
Afiliação
  • Andrés MA; Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain.
  • Benzaqui M; Institut Lavoisier de Versailles, 45 avenue de États-Unis, Bâtiment Lavoisier, 78035 Versailles Cedex, France; Institut des Matériaux Poreux de Paris, FRE 2000 CNRS Ecole Normale Supérieure de Paris, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Research University, 75005 Par
  • Serre C; Institut Lavoisier de Versailles, 45 avenue de États-Unis, Bâtiment Lavoisier, 78035 Versailles Cedex, France; Institut des Matériaux Poreux de Paris, FRE 2000 CNRS Ecole Normale Supérieure de Paris, Ecole Supérieure de Physique et de Chimie Industrielles de Paris, PSL Research University, 75005 Par
  • Steunou N; Institut Lavoisier de Versailles, 45 avenue de États-Unis, Bâtiment Lavoisier, 78035 Versailles Cedex, France.
  • Gascón I; Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain. Electronic address: igascon@unizar.es.
J Colloid Interface Sci ; 519: 88-96, 2018 Jun 01.
Article em En | MEDLINE | ID: mdl-29482100
ABSTRACT
This contribution reports the fabrication and characterization of ultrathin films of nanoparticles of the water stable microporous Al tricarboxylate metal organic framework MIL-96(Al). The preparation of MOF dispersions in chloroform has been optimized to obtain dense monolayer films of good quality, without nanoparticle agglomeration, at the air-water interface that can be deposited onto solid substrates of different nature without any previous substrate functionalization. The MOF studied shows great interest for CO2 capture because it presents Al3+ Lewis centers and hydroxyl groups that strongly interact with CO2 molecules. A comparative CO2 adsorption study on drop-cast, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) films using a Quartz Crystal Microbalance-based setup (QCM) has revealed that the CO2 uptake depends strongly on the film fabrication procedure and the storage conditions. Noteworthy the CO2 adsorption capacity of LB films is increased by 30% using a simple and green treatment (immersion of the film into water during 12 h just after film preparation). Finally, the stability of LB MOF monolayers upon several CO2 adsorption/desorption cycles has been demonstrated, showing that CO2 can be easily desorbed from the films at 303 K by flowing an inert gas (He). These results show that MOF LB monolayers can be of great interest for the development of MOF-based devices that require the use of very small MOF quantities, especially gas sensors.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Espanha
...