Your browser doesn't support javascript.
loading
The SMAD2/3 interactome reveals that TGFß controls m6A mRNA methylation in pluripotency.
Bertero, Alessandro; Brown, Stephanie; Madrigal, Pedro; Osnato, Anna; Ortmann, Daniel; Yiangou, Loukia; Kadiwala, Juned; Hubner, Nina C; de Los Mozos, Igor Ruiz; Sadée, Christoph; Lenaerts, An-Sofie; Nakanoh, Shota; Grandy, Rodrigo; Farnell, Edward; Ule, Jernej; Stunnenberg, Hendrik G; Mendjan, Sasha; Vallier, Ludovic.
Afiliação
  • Bertero A; Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
  • Brown S; Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
  • Madrigal P; Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
  • Osnato A; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.
  • Ortmann D; Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
  • Yiangou L; Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
  • Kadiwala J; Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
  • Hubner NC; Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
  • de Los Mozos IR; Department of Molecular Biology, Radboud University, Nijmegen 6525GA, The Netherlands.
  • Sadée C; Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK.
  • Lenaerts AS; Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK.
  • Nakanoh S; Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
  • Grandy R; Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
  • Farnell E; Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
  • Ule J; Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
  • Stunnenberg HG; Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK.
  • Mendjan S; Department of Molecular Biology, Radboud University, Nijmegen 6525GA, The Netherlands.
  • Vallier L; Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
Nature ; 555(7695): 256-259, 2018 03 08.
Article em En | MEDLINE | ID: mdl-29489750
ABSTRACT
The TGFß pathway has essential roles in embryonic development, organ homeostasis, tissue repair and disease. These diverse effects are mediated through the intracellular effectors SMAD2 and SMAD3 (hereafter SMAD2/3), whose canonical function is to control the activity of target genes by interacting with transcriptional regulators. Therefore, a complete description of the factors that interact with SMAD2/3 in a given cell type would have broad implications for many areas of cell biology. Here we describe the interactome of SMAD2/3 in human pluripotent stem cells. This analysis reveals that SMAD2/3 is involved in multiple molecular processes in addition to its role in transcription. In particular, we identify a functional interaction with the METTL3-METTL14-WTAP complex, which mediates the conversion of adenosine to N6-methyladenosine (m6A) on RNA. We show that SMAD2/3 promotes binding of the m6A methyltransferase complex to a subset of transcripts involved in early cell fate decisions. This mechanism destabilizes specific SMAD2/3 transcriptional targets, including the pluripotency factor gene NANOG, priming them for rapid downregulation upon differentiation to enable timely exit from pluripotency. Collectively, these findings reveal the mechanism by which extracellular signalling can induce rapid cellular responses through regulation of the epitranscriptome. These aspects of TGFß signalling could have far-reaching implications in many other cell types and in diseases such as cancer.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: RNA Mensageiro / Diferenciação Celular / Adenosina / Fator de Crescimento Transformador beta / Células-Tronco Pluripotentes / Proteína Smad2 / Proteína Smad3 Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Nature Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: RNA Mensageiro / Diferenciação Celular / Adenosina / Fator de Crescimento Transformador beta / Células-Tronco Pluripotentes / Proteína Smad2 / Proteína Smad3 Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Nature Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Reino Unido