Your browser doesn't support javascript.
loading
Metabolic Determinants of Sensitivity to Phosphatidylinositol 3-Kinase Pathway Inhibitor in Small-Cell Lung Carcinoma.
Makinoshima, Hideki; Umemura, Shigeki; Suzuki, Ayako; Nakanishi, Hiroki; Maruyama, Ami; Udagawa, Hibiki; Mimaki, Sachiyo; Matsumoto, Shingo; Niho, Seiji; Ishii, Genichiro; Tsuboi, Masahiro; Ochiai, Atsushi; Esumi, Hiroyasu; Sasaki, Takehiko; Goto, Koichi; Tsuchihara, Katsuya.
Afiliação
  • Makinoshima H; Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.
  • Umemura S; Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.
  • Suzuki A; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan. sumemura@east.ncc.go.jp.
  • Nakanishi H; Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.
  • Maruyama A; Research Center for Biosignal, Akita University, Akita, Japan.
  • Udagawa H; Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.
  • Mimaki S; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
  • Matsumoto S; Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.
  • Niho S; Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.
  • Ishii G; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
  • Tsuboi M; Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
  • Ochiai A; Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.
  • Esumi H; Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan.
  • Sasaki T; Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan.
  • Goto K; Division of Clinical Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
  • Tsuchihara K; Research Center for Biosignal, Akita University, Akita, Japan.
Cancer Res ; 78(9): 2179-2190, 2018 05 01.
Article em En | MEDLINE | ID: mdl-29490947
ABSTRACT
Comprehensive genomic analysis has revealed that the PI3K/AKT/mTOR pathway is a feasible therapeutic target in small-cell lung carcinoma (SCLC). However, biomarkers to identify patients likely to benefit from inhibitors of this pathway have not been identified. Here, we show that metabolic features determine sensitivity to the PI3K/mTOR dual inhibitor gedatolisib in SCLC cells. Substantial phosphatidyl lipid analysis revealed that a specific phosphatidylinositol (3,4,5)-trisphosphate (PIP3) subspecies lipid product PIP3 (384) is predictive in assessing sensitivity to PI3K/mTOR dual inhibitor. Notably, we found that higher amounts of purine-related aqueous metabolites such as hypoxanthine, which are characteristic of SCLC biology, lead to resistance to PI3K pathway inhibition. In addition, the levels of the mRNA encoding hypoxanthine phosphoribosyl transferase 1, a key component of the purine salvage pathway, differed significantly between SCLC cells sensitive or resistant to gedatolisib. Moreover, complementation with purine metabolites could reverse the vulnerability to targeting of the PI3K pathway in SCLC cells normally sensitive to gedatolisib. These results indicate that the resistance mechanism of PI3K pathway inhibitors is mediated by the activation of the purine salvage pathway, supplying purine resource to nucleotide biosynthesis. Metabolomics is a powerful approach for finding novel therapeutic biomarkers in SCLC treatment.

Significance:

These findings identify features that determine sensitivity of SCLC to PI3K pathway inhibition and support metabolomics as a tool for finding novel therapeutic biomarkers. Cancer Res; 78(9); 2179-90. ©2018 AACR.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfatidilinositol 3-Quinases / Inibidores de Proteínas Quinases / Biomarcadores Farmacológicos / Carcinoma de Pequenas Células do Pulmão Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Female / Humans / Male Idioma: En Revista: Cancer Res Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfatidilinositol 3-Quinases / Inibidores de Proteínas Quinases / Biomarcadores Farmacológicos / Carcinoma de Pequenas Células do Pulmão Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Animals / Female / Humans / Male Idioma: En Revista: Cancer Res Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Japão