Your browser doesn't support javascript.
loading
Machine learning for medical ultrasound: status, methods, and future opportunities.
Brattain, Laura J; Telfer, Brian A; Dhyani, Manish; Grajo, Joseph R; Samir, Anthony E.
Afiliação
  • Brattain LJ; MIT Lincoln Laboratory, 244 Wood St, Lexington, MA, 02420, USA. brattainl@ll.mit.edu.
  • Telfer BA; MIT Lincoln Laboratory, 244 Wood St, Lexington, MA, 02420, USA.
  • Dhyani M; Department of Internal Medicine, Steward Carney Hospital, Boston, MA, 02124, USA.
  • Grajo JR; Division of Ultrasound, Department of Radiology, Center for Ultrasound Research & Translation, Massachusetts General Hospital, Boston, MA, 02114, USA.
  • Samir AE; Department of Radiology, Division of Abdominal Imaging, University of Florida College of Medicine, Gainesville, FL, USA.
Abdom Radiol (NY) ; 43(4): 786-799, 2018 04.
Article em En | MEDLINE | ID: mdl-29492605
Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportunities. Challenges include high inter- and intra-operator variability and limited image quality control. Tremendous opportunities have arisen in the last decade as a result of exponential growth in available computational power coupled with progressive miniaturization of US devices. As US devices become smaller, enhanced computational capability can contribute significantly to decreasing variability through advanced image processing. In this paper, we review leading machine learning (ML) approaches and research directions in US, with an emphasis on recent ML advances. We also present our outlook on future opportunities for ML techniques to further improve clinical workflow and US-based disease diagnosis and characterization.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ultrassonografia / Abdome / Aprendizado de Máquina Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Abdom Radiol (NY) Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ultrassonografia / Abdome / Aprendizado de Máquina Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Abdom Radiol (NY) Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos