Your browser doesn't support javascript.
loading
Second-line anti-tuberculosis drug resistance testing in Ghana identifies the first extensively drug-resistant tuberculosis case.
Osei-Wusu, Stephen; Amo Omari, Michael; Asante-Poku, Adwoa; Darko Otchere, Isaac; Asare, Prince; Forson, Audrey; Otu, Jacob; Antonio, Martin; Yeboah-Manu, Dorothy.
Afiliação
  • Osei-Wusu S; Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
  • Amo Omari M; West Africa Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana.
  • Asante-Poku A; Department of Chest Diseases, Korle-Bu Teaching Hospital, Accra, Ghana.
  • Darko Otchere I; Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
  • Asare P; Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
  • Forson A; Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
  • Otu J; Department of Chest Diseases, Korle-Bu Teaching Hospital, Accra, Ghana.
  • Antonio M; Medical Research Council Unit, Fajara, The Gambia.
  • Yeboah-Manu D; Medical Research Council Unit, Fajara, The Gambia.
Infect Drug Resist ; 11: 239-246, 2018.
Article em En | MEDLINE | ID: mdl-29503573
BACKGROUND: Drug resistance surveillance is crucial for tuberculosis (TB) control. Therefore, our goal was to determine the prevalence of second-line anti-TB drug resistance among diverse primary drug-resistant Mycobacterium tuberculosis complex (MTBC) isolates in Ghana. MATERIALS AND METHODS: One hundred and seventeen MTBC isolates with varying first-line drug resistance were analyzed. Additional resistance to second-line anti-TB drugs (streptomycin [STR], amikacin [AMK] and moxifloxacin [MOX]) was profiled using the Etest and GenoType MTBDRsl version 2.0. Genes associated with resistance to AMK and MOX (gyrA, gyrB, eis, rrs, tap, whiB7 and tlyA) were then analyzed for mutation. RESULTS: Thirty-seven (31.9%) isolates had minimum inhibitory concentration (MIC) values ≥2 µg/mL against STR while 12 (10.3%) isolates had MIC values ≥1 µg/mL for AMK. Only one multidrug-resistant (MDR) isolate (Isolate ID: TB/Nm 919) had an MIC value of ≥0.125 µg/mL for MOX (MIC = 3 µg/mL). This isolate also had the highest MIC value for AMK (MIC = 16 µg/mL) and was confirmed as resistant to AMK and MOX by the line probe assay GenoType MTBDRsl version 2.0. Mutations associated with the resistance were: gyrA (G88C) and rrs (A514C and A1401G). CONCLUSION: Our findings suggest the need to include routine second-line anti-TB drug susceptibility testing of MDR/rifampicin-resistant isolates in our diagnostic algorithm.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Infect Drug Resist Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Gana País de publicação: Nova Zelândia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Infect Drug Resist Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Gana País de publicação: Nova Zelândia