Your browser doesn't support javascript.
loading
[18F]RPS-544: A PET tracer for imaging the chemokine receptor CXCR4.
Amor-Coarasa, Alejandro; Kelly, James; Ponnala, Shashikanth; Vedvyas, Yogindra; Nikolopoulou, Anastasia; Williams, Clarence; Jin, Moonsoo M; David Warren, J; Babich, John W.
Afiliação
  • Amor-Coarasa A; Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Molecular Imaging Innovations Institute (MI(3)), Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
  • Kelly J; Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Molecular Imaging Innovations Institute (MI(3)), Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
  • Ponnala S; Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Molecular Imaging Innovations Institute (MI(3)), Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
  • Vedvyas Y; Molecular Imaging Innovations Institute (MI(3)), Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
  • Nikolopoulou A; Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA.
  • Williams C; Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Molecular Imaging Innovations Institute (MI(3)), Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
  • Jin MM; Molecular Imaging Innovations Institute (MI(3)), Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
  • David Warren J; Milstein Chemistry Core Facility, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
  • Babich JW; Division of Radiopharmaceutical Sciences, Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA. Electronic address: job2060@
Nucl Med Biol ; 60: 37-44, 2018 05.
Article em En | MEDLINE | ID: mdl-29544122
ABSTRACT

INTRODUCTION:

CXCR4 specific [18F]-labeled positron emission tomography (PET) imaging agents are needed which would enable general distribution of the radiotracer for clinical investigation. We sought to synthesize, radiolabel and evaluate [18F]RPS-544, a novel non-peptide CXCR4 antagonist as a CXCR4 specific probe. We compared [18F]RPS-544 with the previously published [18F]-3 ([18F]RPS-510 in this paper) in a bi-lateral tumor model of differential CXCR4 expression for its ability to selectively target CXCR4 expression.

METHODS:

Radiolabeling of [18F]RPS-544 and [18F]RPS-510 was performed by aromatic substitution on a 6-nitropyridyl group using no-carrier-added [18F]fluoride under basic conditions. 18F incorporation was determined by radioHPLC. Semi-preparative HPLC was used to purify the final product prior to reformulation. Imaging and biodistribution was performed in nude mice with bilateral PC3 (CXCR4+ and WT) xenograft tumors at 1, 2 and 4 h post injection.

RESULTS:

RPS-544 bound CXCR4 with an IC50 of 4.9 ±â€¯0.3 nM. [18F]RPS-544 showed preferential uptake in CXCR4+ tumors, with a CXCR4/WT ratio of 3.3 ±â€¯1.3 at 1 h p.i. and 2.3 ±â€¯0.5 at 2 h p.i. Maximum uptake in the CXCR4+ tumors was 3.4 ±â€¯1.2%ID/g at 1 h p.i., significantly greater (p = 0.003) than the uptake in the WT tumor. Tumor/blood ratios were 2.5 ±â€¯0.4 and 3.6 ±â€¯0.3 at 1 and 2 h p.i. Tumor/muscle ratios were >4 at all time-points. Tumor/lung ratios were >2 at 1 h and 2 h p.i. Substantial uptake was observed in the liver (15-25%ID/g), kidneys (25-35%ID/g), the small intestine (1-7%ID/g) and the large intestine (1-12%ID/g). Blood concentrations varied over time (0.5-2%ID/g). All other organs showed uptake of <1%ID/g at all time points studied with clearance profiles similar to blood clearance.

CONCLUSIONS:

Here we present, to the best of our knowledge, the first high affinity [18F]-labeled tracer, suitable for in vivo PET imaging of CXCR4. [18F]RPS-544 displayed high affinity for CXCR4 and good tumor uptake with a maximum uptake at 1 h p.i.. CXCR4 dependent uptake was demonstrated using bilateral tumors with differential CXCR4 expression as well as pharmacological blockade using the known CXCR4 antagonist, AMD-3100. Tissue contrast as judged by tumor to normal tissue ratios was positive in several key tissues. The structural and pharmacological similarities between [18F]RPS-544 and the approved drug AMD-3465, combined with the ease of synthesis and high molar activity (>185 GBq/µmol) achieved during radiosynthesis could lead to accelerated translation into the clinic.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Radiofarmacêuticos / Receptores CXCR4 / Tomografia por Emissão de Pósitrons Limite: Animals / Humans Idioma: En Revista: Nucl Med Biol Assunto da revista: BIOLOGIA / MEDICINA NUCLEAR Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Radiofarmacêuticos / Receptores CXCR4 / Tomografia por Emissão de Pósitrons Limite: Animals / Humans Idioma: En Revista: Nucl Med Biol Assunto da revista: BIOLOGIA / MEDICINA NUCLEAR Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos