Your browser doesn't support javascript.
loading
Enhanced Electrochemical Performance of Fast Ionic Conductor LiTi2(PO4)3-Coated LiNi1/3Co1/3Mn1/3O2 Cathode Material.
Zhang, Lu-Lu; Wang, Ji-Qing; Yang, Xue-Lin; Liang, Gan; Li, Tao; Yu, Peng-Lin; Ma, Di.
Afiliação
  • Zhang LL; College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid , China Three Gorges University , 8 Daxue Road , Yichang , Hubei 443002 , China.
  • Wang JQ; College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid , China Three Gorges University , 8 Daxue Road , Yichang , Hubei 443002 , China.
  • Yang XL; College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid , China Three Gorges University , 8 Daxue Road , Yichang , Hubei 443002 , China.
  • Liang G; Department of Physics , Sam Houston State University , Huntsville , Texas 77341 , United States.
  • Li T; College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid , China Three Gorges University , 8 Daxue Road , Yichang , Hubei 443002 , China.
  • Yu PL; College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid , China Three Gorges University , 8 Daxue Road , Yichang , Hubei 443002 , China.
  • Ma D; College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid , China Three Gorges University , 8 Daxue Road , Yichang , Hubei 443002 , China.
ACS Appl Mater Interfaces ; 10(14): 11663-11670, 2018 Apr 11.
Article em En | MEDLINE | ID: mdl-29546985
ABSTRACT
Layered LiNi1/3Co1/3Mn1/3O2 (NCM333) is successfully coated by fast ionic conductor LiTi2(PO4)3 (LTP) via a wet chemical method. The effects of LTP on the physicochemical properties and electrochemical performance are studied. The results reveal that a highly layered structure of NCM333 can be well maintained with less cation mixing after LTP coating. LTP of about 5 nm thickness is coated on the surface of NCM333. Such an LTP coating layer can effectively suppress the side reactions between NCM333 and electrolyte but will not hinder the lithium ion transmission. As a result, LTP-coated NCM333 owns an improved capability and cyclic performance, for example, NCM333/LTP delivers an initial capacity as high as 121.0 mA h g-1 with a capacity retention ratio of 82.3% after 200 cycles at 10 C, whereas NCM333 only has an initial capacity of 120.4 mA h g-1 with a very low capacity retention ratio of 66.4%. This method of using a fast ionic conductor like LTP as a coating material may provide a simple and effective strategy to modify those electrode materials with poor cyclic performance.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China