Your browser doesn't support javascript.
loading
A vectorized Levenberg-Marquardt model fitting algorithm for efficient post-processing of cardiac T1 mapping MRI.
Liu, Shufang; Bustin, Aurelien; Ferry, Pauline; Codreanu, Andrei; Burschka, Darius; Menini, Anne; Odille, Freddy.
Afiliação
  • Liu S; Technische Universität München, Department of Computer Science, Munich, Germany; GE Global Research, Munich, Germany; Imagerie Adaptative Diagnostique et Interventionnelle, Université de Lorraine, Nancy, France. Electronic address: shufang.liu@tum.de.
  • Bustin A; Technische Universität München, Department of Computer Science, Munich, Germany; GE Global Research, Munich, Germany; Imagerie Adaptative Diagnostique et Interventionnelle, Université de Lorraine, Nancy, France.
  • Ferry P; Imagerie Adaptative Diagnostique et Interventionnelle, Université de Lorraine, Nancy, France; IADI, INSERM, Nancy, France.
  • Codreanu A; Centre Hospitalier de Luxembourg, Luxembourg.
  • Burschka D; Technische Universität München, Department of Computer Science, Munich, Germany.
  • Menini A; GE Global Research, Munich, Germany.
  • Odille F; Imagerie Adaptative Diagnostique et Interventionnelle, Université de Lorraine, Nancy, France; IADI, INSERM, Nancy, France; CIC-IT 1433, CHRU de Nancy, Nancy, France.
Comput Biol Med ; 96: 106-115, 2018 05 01.
Article em En | MEDLINE | ID: mdl-29567482
PURPOSE: T1 mapping is an emerging MRI research tool to assess diseased myocardial tissue. Recent research has been focusing on the image acquisition protocol and motion correction, yet little attention has been paid to the curve fitting algorithm. METHODS: After nonrigid registration of the image series, a vectorized Levenberg-Marquardt (LM) technique is proposed to improve the robustness of the curve fitting algorithm by allowing spatial regularization of the parametric maps. In addition, a region-based initialization is proposed to improve the initial guess of the T1 value. The algorithm was validated with cardiac T1 mapping data from 16 volunteers acquired with saturation-recovery (SR) and inversion-recovery (IR) techniques at 3T, both pre- and post-injection of a contrast agent. Signal models of T1 relaxation with 2 and 3 parameters were tested. RESULTS: The vectorized LM fitting showed good agreement with its pixel-wise version but allowed reduced calculation time (60 s against 696 s on average in Matlab with 256 × 256 × 8(11) images). Increasing the spatial regularization parameter led to noise reduction and improved precision of T1 values in SR sequences. The region-based initialization was particularly useful in IR data to reduce the variability of the blood T1. CONCLUSIONS: We have proposed a vectorized curve fitting algorithm allowing spatial regularization, which could improve the robustness of the curve fitting, especially for myocardial T1 mapping with SR sequences.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Imageamento por Ressonância Magnética / Interpretação de Imagem Assistida por Computador / Técnicas de Imagem Cardíaca / Coração Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Comput Biol Med Ano de publicação: 2018 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Imageamento por Ressonância Magnética / Interpretação de Imagem Assistida por Computador / Técnicas de Imagem Cardíaca / Coração Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Comput Biol Med Ano de publicação: 2018 Tipo de documento: Article País de publicação: Estados Unidos