Your browser doesn't support javascript.
loading
Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning.
Sidlauskaite, Eva; Gibson, Jack W; Megson, Ian L; Whitfield, Philip D; Tovmasyan, Artak; Batinic-Haberle, Ines; Murphy, Michael P; Moult, Peter R; Cobley, James N.
Afiliação
  • Sidlauskaite E; School of Science Engineering and Technology, Abertay University, Dundee DD1 1HG, UK.
  • Gibson JW; School of Science Engineering and Technology, Abertay University, Dundee DD1 1HG, UK.
  • Megson IL; Institute of Health Science, University of Highlands and Islands, Inverness IV2 3JH, UK.
  • Whitfield PD; Institute of Health Science, University of Highlands and Islands, Inverness IV2 3JH, UK.
  • Tovmasyan A; Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA.
  • Batinic-Haberle I; Department of Radiation Oncology, School of Medicine, Duke University, Durham, NC 27710, USA.
  • Murphy MP; MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK.
  • Moult PR; School of Science Engineering and Technology, Abertay University, Dundee DD1 1HG, UK.
  • Cobley JN; Institute of Health Science, University of Highlands and Islands, Inverness IV2 3JH, UK. Electronic address: james.cobley@uhi.ac.uk.
Redox Biol ; 16: 344-351, 2018 06.
Article em En | MEDLINE | ID: mdl-29587245
Developmental synapse pruning refines burgeoning connectomes. The basic mechanisms of mitochondrial reactive oxygen species (ROS) production suggest they select inactive synapses for pruning: whether they do so is unknown. To begin to unravel whether mitochondrial ROS regulate pruning, we made the local consequences of neuromuscular junction (NMJ) pruning detectable as motor deficits by using disparate exogenous and endogenous models to induce synaptic inactivity en masse in developing Xenopus laevis tadpoles. We resolved whether: (1) synaptic inactivity increases mitochondrial ROS; and (2) chemically heterogeneous antioxidants rescue synaptic inactivity induced motor deficits. Regardless of whether it was achieved with muscle (α-bungarotoxin), nerve (α-latrotoxin) targeted neurotoxins or an endogenous pruning cue (SPARC), synaptic inactivity increased mitochondrial ROS in vivo. The manganese porphyrins MnTE-2-PyP5+ and/or MnTnBuOE-2-PyP5+ blocked mitochondrial ROS to significantly reduce neurotoxin and endogenous pruning cue induced motor deficits. Selectively inducing mitochondrial ROS-using mitochondria-targeted Paraquat (MitoPQ)-recapitulated synaptic inactivity induced motor deficits; which were significantly reduced by blocking mitochondrial ROS with MnTnBuOE-2-PyP5+. We unveil mitochondrial ROS as synaptic activity sentinels that regulate the phenotypical consequences of forced synaptic inactivity at the NMJ. Our novel results are relevant to pruning because synaptic inactivity is one of its defining features.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sinapses / Espécies Reativas de Oxigênio / Mitocôndrias / Junção Neuromuscular Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Redox Biol Ano de publicação: 2018 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sinapses / Espécies Reativas de Oxigênio / Mitocôndrias / Junção Neuromuscular Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Redox Biol Ano de publicação: 2018 Tipo de documento: Article País de publicação: Holanda