Your browser doesn't support javascript.
loading
Bayesian uncertainty quantification in linear models for diffusion MRI.
Sjölund, Jens; Eklund, Anders; Özarslan, Evren; Herberthson, Magnus; Bånkestad, Maria; Knutsson, Hans.
Afiliação
  • Sjölund J; Elekta Instrument AB, Kungstensgatan 18, Box 7593, SE-103 93, Stockholm, Sweden; Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Sweden. Electronic address: jens.sjolund@elekta.com.
  • Eklund A; Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Sweden; Department of Computer and Information Science, Linköping University, Linköping, Sweden.
  • Özarslan E; Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Sweden.
  • Herberthson M; Department of Mathematics, Linköping University, Linköping, Sweden.
  • Bånkestad M; RISE SICS, Isafjordsgatan 22, Box 1263, SE-164 29, Kista, Sweden.
  • Knutsson H; Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Sweden.
Neuroimage ; 175: 272-285, 2018 07 15.
Article em En | MEDLINE | ID: mdl-29604453
ABSTRACT
Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Interpretação Estatística de Dados / Imagem de Difusão por Ressonância Magnética / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Interpretação Estatística de Dados / Imagem de Difusão por Ressonância Magnética / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2018 Tipo de documento: Article