Your browser doesn't support javascript.
loading
H1N1 seasonal influenza virus evolutionary rate changed over time.
Suptawiwat, Ornpreya; Kongchanagul, Alita; Boonarkart, Chompunuch; Auewarakul, Prasert.
Afiliação
  • Suptawiwat O; Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Talat Bang Khen, Lak Si, Bangkok, 10210, Thailand.
  • Kongchanagul A; The Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand. Electronic address: alita.kon@mahidol.ac.th.
  • Boonarkart C; Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol Universit, 2 Prannok Road. Bangkoknoi, Bangkok, 10700, Thailand.
  • Auewarakul P; Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol Universit, 2 Prannok Road. Bangkoknoi, Bangkok, 10700, Thailand.
Virus Res ; 250: 43-50, 2018 05 02.
Article em En | MEDLINE | ID: mdl-29608996
ABSTRACT
It was previously shown that the seasonal H1N1 influenza virus antigenic drift occurred at a slower rate than the seasonal H3N2 virus during the first decade of the 21th century. It was hypothesized that the slower antigenic evolution led to a decrease in average ages of infection, which in turn resulted in lower level of global viral circulation. It is unclear what caused the difference between the two viruses, but a plausible explanation may be related to the fact that the H1N1 virus had been in human population for much longer than the H3N2 virus. This would suggest that H1N1 antigenic drift in an earlier period may have been different from a more recent period. To test this hypothesis, we analyzed seasonal H1N1 influenza sequences during various time periods. In comparison to more recent H1N1 virus, the older H1N1 virus during the first half of the 20th century showed evidences of higher nonsynnonymous/synonymous ration (dN/dS) in its hemagglutinin (HA) gene. We compared amino acid sequence changes in the HA epitopes for each outbreak season and found that there were less changes in later years. Amino acid sequence diversity in the epitopes as measured by sequence entropy became smaller for each passing decade. These suggest that there might be some limit to the antigenic drift. The longer an influenza virus has drifted in human population, the less flexibility it may become. With less flexibility to adapt and escape the host immunity, the virus may have to rely more on younger naïve population.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Variação Antigênica / Evolução Molecular / Deriva Genética / Vírus da Influenza A Subtipo H1N1 / Epitopos Limite: Humans Idioma: En Revista: Virus Res Assunto da revista: VIROLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Tailândia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Variação Antigênica / Evolução Molecular / Deriva Genética / Vírus da Influenza A Subtipo H1N1 / Epitopos Limite: Humans Idioma: En Revista: Virus Res Assunto da revista: VIROLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Tailândia
...