A Bayesian hierarchical latent trait model for estimating rater bias and reliability in large-scale performance assessment.
PLoS One
; 13(4): e0195297, 2018.
Article
em En
| MEDLINE
| ID: mdl-29614129
We propose a novel approach to modelling rater effects in scoring-based assessment. The approach is based on a Bayesian hierarchical model and simulations from the posterior distribution. We apply it to large-scale essay assessment data over a period of 5 years. Empirical results suggest that the model provides a good fit for both the total scores and when applied to individual rubrics. We estimate the median impact of rater effects on the final grade to be ± 2 points on a 50 point scale, while 10% of essays would receive a score at least ± 5 different from their actual quality. Most of the impact is due to rater unreliability, not rater bias.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Variações Dependentes do Observador
/
Reprodutibilidade dos Testes
/
Modelos Estatísticos
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
PLoS One
Assunto da revista:
CIENCIA
/
MEDICINA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Eslovênia
País de publicação:
Estados Unidos