Your browser doesn't support javascript.
loading
Examining Cybersecurity of Cyberphysical Systems for Critical Infrastructures Through Work Domain Analysis.
Wang, Hao; Lau, Nathan; Gerdes, Ryan M.
Afiliação
  • Wang H; Virginia Polytechnic Institute and State University, Blacksburg.
  • Lau N; Virginia Polytechnic Institute and State University, Blacksburg.
  • Gerdes RM; Virginia Polytechnic Institute and State University, Blacksburg.
Hum Factors ; 60(5): 699-718, 2018 08.
Article em En | MEDLINE | ID: mdl-29664683
ABSTRACT

OBJECTIVE:

The aim of this study was to apply work domain analysis for cybersecurity assessment and design of supervisory control and data acquisition (SCADA) systems.

BACKGROUND:

Adoption of information and communication technology in cyberphysical systems (CPSs) for critical infrastructures enables automated and distributed control but introduces cybersecurity risk. Many CPSs employ SCADA industrial control systems that have become the target of cyberattacks, which inflict physical damage without use of force. Given that absolute security is not feasible for complex systems, cyberintrusions that introduce unanticipated events will occur; a proper response will in turn require human adaptive ability. Therefore, analysis techniques that can support security assessment and human factors engineering are invaluable for defending CPSs.

METHOD:

We conducted work domain analysis using the abstraction hierarchy (AH) to model a generic SCADA implementation to identify the functional structures and means-ends relations. We then adopted a case study approach examining the Stuxnet cyberattack by developing and integrating AHs for the uranium enrichment process, SCADA implementation, and malware to investigate the interactions between the three aspects of cybersecurity in CPSs.

RESULTS:

The AHs for modeling a generic SCADA implementation and studying the Stuxnet cyberattack are useful for mapping attack vectors, identifying deficiencies in security processes and features, and evaluating proposed security solutions with respect to system objectives.

CONCLUSION:

Work domain analysis is an effective analytical method for studying cybersecurity of CPSs for critical infrastructures in a psychologically relevant manner. APPLICATION Work domain analysis should be applied to assess cybersecurity risk and inform engineering and user interface design.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise de Sistemas / Segurança Computacional / Medição de Risco / Terrorismo / Modelos Teóricos Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Hum Factors Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise de Sistemas / Segurança Computacional / Medição de Risco / Terrorismo / Modelos Teóricos Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Hum Factors Ano de publicação: 2018 Tipo de documento: Article