pH-Sensitive Multiligand Gold Nanoplatform Targeting Carbonic Anhydrase IX Enhances the Delivery of Doxorubicin to Hypoxic Tumor Spheroids and Overcomes the Hypoxia-Induced Chemoresistance.
ACS Appl Mater Interfaces
; 10(21): 17792-17808, 2018 May 30.
Article
em En
| MEDLINE
| ID: mdl-29733576
Hypoxia is a common feature of solid tumors contributing to resistance to chemotherapy. Selective delivery of chemotherapeutic drugs to hypoxic tumor niche remains an unsolved issue. For this purpose, we constructed a gold nanoplatform targeting carbonic anhydrase IX (CA IX) epitope, which is overexpressed in hypoxic tumor cells versus in normal tissues. We designed compatible low-molecular weight carbonic anhydrase inhibitor (CAI) ligands and doxorubicin (Dox) ligands and optimized protocols for efficient decoration of gold nanoparticles (Au NPs) to achieve both good targeting ligand density and optimum drug loading, while preserving colloidal stability. The optimized Dox-HZN-DTDP@Au NPs-LA-PEG2000-CAI (THZN) nanoplatform was proved to be very efficient toward killing HT-29 tumor cells, especially under hypoxic conditions, as compared with the nontargeting nanoplatform. This also mediated the effective release of doxorubicin in the lysosomes following internalization, as revealed by confocal microscopy. Furthermore, using tumor spheroids as a representative model for hypoxic solid tumors, our THZN nanoplatform enhanced the selective delivery of doxorubicin up to 2.5 times and minimized chemoresistance, showing better tumor drug penetration as compared to that in free drug treatment. Our technology is the first CA IX-targeting gold nanoplatform for efficient delivery of doxorubicin to hypoxic tumors in a controlled fashion, with the perspective to improve the therapy of solid tumors and minimize chemoresistance.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Nanoestruturas
Tipo de estudo:
Diagnostic_studies
/
Guideline
Limite:
Humans
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Assunto da revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos