An absolute sodium abundance for a cloud-free 'hot Saturn' exoplanet.
Nature
; 557(7706): 526-529, 2018 05.
Article
em En
| MEDLINE
| ID: mdl-29736017
Broad absorption signatures from alkali metals, such as the sodium (Na I) and potassium (K I) resonance doublets, have long been predicted in the optical atmospheric spectra of cloud-free irradiated gas giant exoplanets1-3. However, observations have revealed only the narrow cores of these features rather than the full pressure-broadened profiles4-6. Cloud and haze opacity at the day-night planetary terminator are considered to be responsible for obscuring the absorption-line wings, which hinders constraints on absolute atmospheric abundances7-9. Here we report an optical transmission spectrum for the 'hot Saturn' exoplanet WASP-96b obtained with the Very Large Telescope, which exhibits the complete pressure-broadened profile of the sodium absorption feature. The spectrum is in excellent agreement with cloud-free, solar-abundance models assuming chemical equilibrium. We are able to measure a precise, absolute sodium abundance of logεNa = [Formula: see text], and use it as a proxy for the planet's atmospheric metallicity relative to the solar value (Zp/ZÊ = [Formula: see text]). This result is consistent with the mass-metallicity trend observed for Solar System planets and exoplanets10-12.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Nature
Ano de publicação:
2018
Tipo de documento:
Article
País de publicação:
Reino Unido