Your browser doesn't support javascript.
loading
A rank weighted classification for plasma proteomic profiles based on case-based reasoning.
Kwon, Amy M.
Afiliação
  • Kwon AM; Big Data Science, Division of Economics & Statistics, College of Public Policy, Korea University, Sejong, Korea. amykwon@korea.ac.kr.
BMC Med Inform Decis Mak ; 18(1): 34, 2018 05 31.
Article em En | MEDLINE | ID: mdl-29855314
BACKGROUND: It is a challenge to precisely classify plasma proteomic profiles into their clinical status based solely on their patterns even though distinct patterns of plasma proteomic profiles are regarded as potential to be a biomarker because the profiles have large within-subject variances. METHODS: The present study proposes a rank-based weighted CBR classifier (RWCBR). We hypothesized that a CBR classifier is advantageous when individual patterns are specific and do not follow the general patterns like proteomic profiles, and robust feature weights can enhance the performance of the CBR classifier. To validate RWCBR, we conducted numerical experiments, which predict the clinical status of the 70 subjects using plasma proteomic profiles by comparing the performances to previous approaches. RESULTS: According to the numerical experiment, SVM maintained the highest minimum values of Precision and Recall, but RWCBR showed highest average value in all information indices, and it maintained the smallest standard deviation in F-1 score and G-measure. CONCLUSIONS: RWCBR approach showed potential as a robust classifier in predicting the clinical status of the subjects for plasma proteomic profiles.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sangue / Informática Médica / Inteligência Artificial / Biomarcadores / Proteoma / Proteômica Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: BMC Med Inform Decis Mak Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2018 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sangue / Informática Médica / Inteligência Artificial / Biomarcadores / Proteoma / Proteômica Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: BMC Med Inform Decis Mak Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2018 Tipo de documento: Article País de publicação: Reino Unido