Your browser doesn't support javascript.
loading
Data Driven Models of Short-Term Synaptic Plasticity.
Bayat Mokhtari, Elham; Lawrence, J Josh; Stone, Emily F.
Afiliação
  • Bayat Mokhtari E; Department of Mathematical Sciences, The University of Montana, Missoula, MT, United States.
  • Lawrence JJ; Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
  • Stone EF; Department of Mathematical Sciences, The University of Montana, Missoula, MT, United States.
Front Comput Neurosci ; 12: 32, 2018.
Article em En | MEDLINE | ID: mdl-29872388
Simple models of short term synaptic plasticity that incorporate facilitation and/or depression have been created in abundance for different synapse types and circumstances. The analysis of these models has included computing mutual information between a stochastic input spike train and some sort of representation of the postsynaptic response. While this approach has proven useful in many contexts, for the purpose of determining the type of process underlying a stochastic output train, it ignores the ordering of the responses, leaving an important characterizing feature on the table. In this paper we use a broader class of information measures on output only, and specifically construct hidden Markov models (HMMs) (known as epsilon machines or causal state models) to differentiate between synapse type, and classify the complexity of the process. We find that the machines allow us to differentiate between processes in a way not possible by considering distributions alone. We are also able to understand these differences in terms of the dynamics of the model used to create the output response, bringing the analysis full circle. Hence this technique provides a complimentary description of the synaptic filtering process, and potentially expands the interpretation of future experimental results.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Comput Neurosci Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Comput Neurosci Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Suíça