Your browser doesn't support javascript.
loading
ClusterScan: simple and generalistic identification of genomic clusters.
Volpe, Massimiliano; Miralto, Marco; Gustincich, Stefano; Sanges, Remo.
Afiliação
  • Volpe M; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.
  • Miralto M; Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.
  • Gustincich S; Department of Neuroscience and Brain Technologies, Italian Institute of Technologies (IIT), Genova, Italy.
  • Sanges R; Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy.
Bioinformatics ; 34(22): 3921-3923, 2018 11 15.
Article em En | MEDLINE | ID: mdl-29912285
Summary: Studies on gene clusters proved to be an excellent source of information to understand genomes evolution and identifying specific metabolic pathways or gene families. Improvements in sequencing methods have resulted in a large increase of sequenced genomes for which cluster annotation could be performed and standardized. Currently available programs are developed to search for specific cluster types and none of them is suitable for a broad range of user-based choices. We have developed ClusterScan which allows identifying clusters of any kind of feature simply based on their genomic coordinates and user-defined categorical annotations. Availability and implementation: The tool is written in Python, distributed under the GNU General Public License (GPL) and available on Github at http://bit.ly/ClusterScan or as Docker image at sangeslab/clusterscan: latest. It is supported through a mailing-list on http://bit.ly/ClusterScanSupport. Supplementary information: Supplementary data are available at Bioinformatics online.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / Genômica Tipo de estudo: Diagnostic_studies Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Itália País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / Genômica Tipo de estudo: Diagnostic_studies Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Itália País de publicação: Reino Unido