Prediction and understanding of AIE effect by quantum mechanics-aided machine-learning algorithm.
Chem Commun (Camb)
; 54(57): 7955-7958, 2018 Jul 12.
Article
em En
| MEDLINE
| ID: mdl-29956696
Significant effort has been devoted to the research of aggregation-induced emission (AIE); however, the discovery of new AIE materials is driven mainly by laborious trial-and-error. In this study, taking triphenylamine (TPA)-based luminophores as an example, we propose an efficient machine-learning scheme for predicting AIE-activity based on quantum mechanics.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Chem Commun (Camb)
Assunto da revista:
QUIMICA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Reino Unido