Your browser doesn't support javascript.
loading
Combining Context and Knowledge Representations for Chemical-Disease Relation Extraction.
IEEE/ACM Trans Comput Biol Bioinform ; 16(6): 1879-1889, 2019.
Article em En | MEDLINE | ID: mdl-29994540
Automatically extracting the relationships between chemicals and diseases is significantly important to various areas of biomedical research and health care. Biomedical experts have built many large-scale knowledge bases (KBs) to advance the development of biomedical research. KBs contain huge amounts of structured information about entities and relationships, therefore plays a pivotal role in chemical-disease relation (CDR) extraction. However, previous researches pay less attention to the prior knowledge existing in KBs. This paper proposes a neural network-based attention model (NAM) for CDR extraction, which makes full use of context information in documents and prior knowledge in KBs. For a pair of entities in a document, an attention mechanism is employed to select important context words with respect to the relation representations learned from KBs. Experiments on the BioCreative V CDR dataset show that combining context and knowledge representations through the attention mechanism, could significantly improve the CDR extraction performance while achieve comparable results with state-of-the-art systems.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Bases de Conhecimento / Mineração de Dados Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: ACM Trans Comput Biol Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Bases de Conhecimento / Mineração de Dados Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: ACM Trans Comput Biol Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de publicação: Estados Unidos