Your browser doesn't support javascript.
loading
Prediction of Zika-confirmed cases in Brazil and Colombia using Google Trends.
Morsy, S; Dang, T N; Kamel, M G; Zayan, A H; Makram, O M; Elhady, M; Hirayama, K; Huy, N T.
Afiliação
  • Morsy S; Medical Biochemistry and Molecular Biology Department,Faculty of Medicine,Tanta University,Tanta,Egypt.
  • Dang TN; Online Research Club(http://www.onlineresearchclub.org).
  • Kamel MG; Online Research Club(http://www.onlineresearchclub.org).
  • Zayan AH; Online Research Club(http://www.onlineresearchclub.org).
  • Makram OM; Online Research Club(http://www.onlineresearchclub.org).
  • Elhady M; Online Research Club(http://www.onlineresearchclub.org).
  • Hirayama K; Department of Immunogenetics,Institute of Tropical Medicine (NEKKEN),Leading Graduate School Program, and Graduate School of Biomedical Sciences,Nagasaki University,1-12-4 Sakamoto,Nagasaki 852-8523,Japan.
  • Huy NT; Evidence Based Medicine Research Group & Faculty of Applied Sciences,Ton Duc Thang University,Ho Chi Minh City 700000-760000,Vietnam.
Epidemiol Infect ; 146(13): 1625-1627, 2018 10.
Article em En | MEDLINE | ID: mdl-30056812
Zika virus infection in humans has been linked to severe neurological sequels and foetal malformations. The rapidly evolving epidemics and serious complications made the frequent updates of Zika virus mandatory. Web search query has emerged as a low-cost real-time surveillance system to anticipate infectious diseases' outbreaks. Hence, we developed a prediction model that could predict Zika-confirmed cases based on Zika search volume in Google Trends. We extracted weekly confirmed Zika cases of two epidemic countries, Brazil and Colombia. We got the weekly Zika search volume in the two countries from Google Trends. We used standard time-series regression (TSR) to predict the weekly confirmed Zika cases based on the Zika search volume (Zika query). The basis TSR model - using 1-week lag of Zika query and using 1-week lag of Zika cases as a control for autocorrelation - was the best for predicting Zika cases in Brazil and Colombia because it balanced the performance of the model and the advance time in the prediction. Our results showed that we could use Google search queries to predict Zika cases 1 week earlier before the outbreak. These findings are important to help healthcare authorities evaluate the outbreak and take necessary precautions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Surtos de Doenças / Ferramenta de Busca / Infecção por Zika virus Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: America do sul / Brasil / Colombia Idioma: En Revista: Epidemiol Infect Assunto da revista: DOENCAS TRANSMISSIVEIS / EPIDEMIOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Egito País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Surtos de Doenças / Ferramenta de Busca / Infecção por Zika virus Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: America do sul / Brasil / Colombia Idioma: En Revista: Epidemiol Infect Assunto da revista: DOENCAS TRANSMISSIVEIS / EPIDEMIOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Egito País de publicação: Reino Unido