Your browser doesn't support javascript.
loading
An Efficient Iterative Cerebral Perfusion CT Reconstruction via Low-Rank Tensor Decomposition With Spatial-Temporal Total Variation Regularization.
IEEE Trans Med Imaging ; 38(2): 360-370, 2019 02.
Article em En | MEDLINE | ID: mdl-30106716
Cerebrovascular diseases, i.e., acute stroke, are a common cause of serious long-term disability. Cerebral perfusion computed tomography (CPCT) can provide rapid, high-resolution, quantitative hemodynamic maps to assess and stratify perfusion in patients with acute stroke symptoms. However, CPCT imaging typically involves a substantial radiation dose due to its repeated scanning protocol. Therefore, in this paper, we present a low-dose CPCT image reconstruction method to yield high-quality CPCT images and high-precision hemodynamic maps by utilizing the great similarity information among the repeated scanned CPCT images. Specifically, a newly developed low-rank tensor decomposition with spatial-temporal total variation (LRTD-STTV) regularization is incorporated into the reconstruction model. In the LRTD-STTV regularization, the tensor Tucker decomposition is used to describe global spatial-temporal correlations hidden in the sequential CPCT images, and it is superior to the matricization model (i.e., low-rank model) that fails to fully investigate the prior knowledge of the intrinsic structures of the CPCT images after vectorizing the CPCT images. Moreover, the spatial-temporal TV regularization is used to characterize the local piecewise smooth structure in the spatial domain and the pixels' similarity with the adjacent frames in the temporal domain, because the intensity at each pixel in CPCT images is similar to its neighbors. Therefore, the presented LRTD-STTV model can efficiently deliver faithful underlying information of the CPCT images and preserve the spatial structures. An efficient alternating direction method of multipliers algorithm is also developed to solve the presented LRTD-STTV model. Extensive experimental results on numerical phantom and patient data are clearly demonstrated that the presented model can significantly improve the quality of CPCT images and provide accurate diagnostic features in hemodynamic maps for low-dose cases compared with the existing popular algorithms.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Encéfalo / Tomografia Computadorizada por Raios X Tipo de estudo: Guideline Limite: Humans Idioma: En Revista: IEEE Trans Med Imaging Ano de publicação: 2019 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Encéfalo / Tomografia Computadorizada por Raios X Tipo de estudo: Guideline Limite: Humans Idioma: En Revista: IEEE Trans Med Imaging Ano de publicação: 2019 Tipo de documento: Article País de publicação: Estados Unidos