Your browser doesn't support javascript.
loading
A paralog of a bacteriochlorophyll biosynthesis enzyme catalyzes the formation of 1,2-dihydrocarotenoids in green sulfur bacteria.
Canniffe, Daniel P; Thweatt, Jennifer L; Gomez Maqueo Chew, Aline; Hunter, C Neil; Bryant, Donald A.
Afiliação
  • Canniffe DP; From the Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom, d.canniffe@sheffield.ac.uk.
  • Thweatt JL; the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and.
  • Gomez Maqueo Chew A; the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and.
  • Hunter CN; the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and.
  • Bryant DA; From the Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
J Biol Chem ; 293(39): 15233-15242, 2018 09 28.
Article em En | MEDLINE | ID: mdl-30126840
ABSTRACT
Chlorobaculum tepidum, a green sulfur bacterium, utilizes chlorobactene as its major carotenoid, and this organism also accumulates a reduced form of this monocyclic pigment, 1',2'-dihydrochlorobactene. The protein catalyzing this reduction is the last unidentified enzyme in the biosynthetic pathways for all of the green sulfur bacterial pigments used for photosynthesis. The genome of C. tepidum contains two paralogous genes encoding members of the FixC family of flavoproteins bchP, which has been shown to encode an enzyme of bacteriochlorophyll biosynthesis; and bchO, for which a function has not been assigned. Here we demonstrate that a bchO mutant is unable to synthesize 1',2'-dihydrochlorobactene, and when bchO is heterologously expressed in a neurosporene-producing mutant of the purple bacterium, Rhodobacter sphaeroides, the encoded protein is able to catalyze the formation of 1,2-dihydroneurosporene, the major carotenoid of the only other organism reported to synthesize 1,2-dihydrocarotenoids, Blastochloris viridis Identification of this enzyme completes the pathways for the synthesis of photosynthetic pigments in Chlorobiaceae, and accordingly and consistent with its role in carotenoid biosynthesis, we propose to rename the gene cruI Notably, the absence of cruI in B. viridis indicates that a second 1,2-carotenoid reductase, which is structurally unrelated to CruI (BchO), must exist in nature. The evolution of this carotenoid reductase in green sulfur bacteria is discussed herein.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bacterioclorofilas / Carotenoides / Chlorobi Idioma: En Revista: J Biol Chem Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bacterioclorofilas / Carotenoides / Chlorobi Idioma: En Revista: J Biol Chem Ano de publicação: 2018 Tipo de documento: Article