Your browser doesn't support javascript.
loading
Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared.
Carr, Jessica A; Aellen, Marianne; Franke, Daniel; So, Peter T C; Bruns, Oliver T; Bawendi, Moungi G.
Afiliação
  • Carr JA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Aellen M; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Franke D; Optical Materials Engineering Laboratory, ETH Zurich, 8092 Zurich, Switzerland.
  • So PTC; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Bruns OT; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
  • Bawendi MG; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A ; 115(37): 9080-9085, 2018 09 11.
Article em En | MEDLINE | ID: mdl-30150372
ABSTRACT
Recent technology developments have expanded the wavelength window for biological fluorescence imaging into the shortwave infrared. We show here a mechanistic understanding of how drastic changes in fluorescence imaging contrast can arise from slight changes of imaging wavelength in the shortwave infrared. We demonstrate, in 3D tissue phantoms and in vivo in mice, that light absorption by water within biological tissue increases image contrast due to attenuation of background and highly scattered light. Wavelengths of strong tissue absorption have conventionally been avoided in fluorescence imaging to maximize photon penetration depth and photon collection, yet we demonstrate that imaging at the peak absorbance of water (near 1,450 nm) results in the highest image contrast in the shortwave infrared. Furthermore, we show, through microscopy of highly labeled ex vivo biological tissue, that the contrast improvement from water absorption enables resolution of deeper structures, resulting in a higher imaging penetration depth. We then illustrate these findings in a theoretical model. Our results suggest that the wavelength-dependent absorptivity of water is the dominant optical property contributing to image contrast, and is therefore crucial for determining the optimal imaging window in the infrared.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água / Imagem Óptica / Raios Infravermelhos / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água / Imagem Óptica / Raios Infravermelhos / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2018 Tipo de documento: Article