What we can learn from Big Data about factors influencing perioperative outcome.
Curr Opin Anaesthesiol
; 31(6): 723-731, 2018 Dec.
Article
em En
| MEDLINE
| ID: mdl-30169341
PURPOSE OF REVIEW: This narrative review will discuss what value Big Data has to offer anesthesiology and aims to highlight recently published articles of large databases exploring factors influencing perioperative outcome. Additionally, the future perspectives of Big Data and its major pitfalls will be discussed. RECENT FINDINGS: The potential of Big Data has given an incentive to create nationwide and anesthesia-initiated registries like the MPOG and NACOR. These large databases have contributed in elucidating some of the rare perioperative complications, such as declined cognition after exposure to general anesthesia and epidural hematomas in parturients. Additionally, they are useful in finding patterns such as similar outcome in subtypes of beta-blockers and lower incidence of pneumonia in preoperative influenza vaccinations in the elderly. SUMMARY: Big Data is becoming increasingly popular with the collaborative collection of registries offering anesthesia a way to explore rare perioperative complications and outcome to encourage further hypotheses testing. Although Big Data has its flaws in security, lack of expertise and methodological concerns, the future potential of analytics combined with genomics, machine learning and real-time decision support looks promising.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Resultado do Tratamento
/
Período Perioperatório
/
Big Data
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Curr Opin Anaesthesiol
Assunto da revista:
ANESTESIOLOGIA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Holanda
País de publicação:
Estados Unidos