Your browser doesn't support javascript.
loading
Robustness of post-reconstruction and direct kinetic parameter estimates under rigid head motion in dynamic brain PET imaging.
Kotasidis, F A; Angelis, G I; Anton-Rodriguez, J M; Zaidi, H.
Afiliação
  • Kotasidis FA; Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland; Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ Manchester, UK.
  • Angelis GI; Faculty of Health Sciences, Brain and Mind Centre, The University of Sydney, NSW 2050 Sydney, Australia.
  • Anton-Rodriguez JM; Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ Manchester, UK.
  • Zaidi H; Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland; Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen,
Phys Med ; 53: 40-55, 2018 Sep.
Article em En | MEDLINE | ID: mdl-30241754
ABSTRACT

OBJECTIVE:

Dynamic PET imaging is extensively used in brain imaging to estimate parametric maps. Inter-frame motion can substantially disrupt the voxel-wise time-activity curves (TACs), leading to erroneous maps during kinetic modelling. Therefore, it is important to characterize the robustness of kinetic parameters under various motion and kinetic model related factors.

METHODS:

Fully 4D brain simulations ([15O]H2O and [18F]FDG dynamic datasets) were performed using a variety of clinically observed motion patterns. Increasing levels of head motion were investigated as well as varying temporal frames of motion initiation. Kinetic parameter estimation was performed using both post-reconstruction kinetic analysis and direct 4D image reconstruction to assess bias from inter-frame emission blurring and emission/attenuation mismatch.

RESULTS:

Kinetic parameter bias heavily depends on the time point of motion initiation. Motion initiated towards the end of the scan results in the most biased parameters. For the [18F]FDG data, k4 is the more sensitive parameter to positional changes, while K1 and blood volume were proven to be relatively robust to motion. Direct 4D image reconstruction appeared more sensitive to changes in TACs due to motion, with parameter bias spatially propagating and depending on the level of motion.

CONCLUSION:

Kinetic parameter bias highly depends upon the time frame at which motion occurred, with late frame motion-induced TAC discontinuities resulting in the least accurate parameters. This is of importance during prolonged data acquisition as is often the case in neuro-receptor imaging studies. In the absence of a motion correction, use of TOF information within 4D image reconstruction could limit the error propagation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Encéfalo / Tomografia por Emissão de Pósitrons / Cabeça / Movimento Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Phys Med Assunto da revista: BIOFISICA / BIOLOGIA / MEDICINA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Encéfalo / Tomografia por Emissão de Pósitrons / Cabeça / Movimento Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Phys Med Assunto da revista: BIOFISICA / BIOLOGIA / MEDICINA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Reino Unido