Your browser doesn't support javascript.
loading
The low temperature D+ + H2→ HD + H+ reaction rate coefficient: a ring polymer molecular dynamics and quasi-classical trajectory study.
Bhowmick, Somnath; Bossion, Duncan; Scribano, Yohann; Suleimanov, Yury V.
Afiliação
  • Bhowmick S; Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus. s.bhowmick@cyi.ac.cy.
  • Bossion D; Laboratoire Univers et Particules de Montpellier, UMR-CNRS 5299, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France.
  • Scribano Y; Laboratoire Univers et Particules de Montpellier, UMR-CNRS 5299, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France.
  • Suleimanov YV; Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus. s.bhowmick@cyi.ac.cy.
Phys Chem Chem Phys ; 20(41): 26752-26763, 2018 Nov 07.
Article em En | MEDLINE | ID: mdl-30324962
ABSTRACT
The reaction between D+ and H2 plays an important role in astrochemistry at low temperatures and also serves as a prototype for a simple ion-molecule reaction. Its ground X[combining tilde]1A' state has a very small thermodynamic barrier (up to 1.8 × 10-2 eV) and the reaction proceeds through the formation of an intermediate complex lying within the potential well with a depth of at least 0.2 eV, thus representing a challenge for dynamical studies. In the present work, we analyze the title reaction within the temperature range of 20-100 K by means of ring polymer molecular dynamics (RPMD) and quasi-classical trajectory (QCT) methods over the full-dimensional global potential energy surface developed by Aguado et al. [A. Aguado, O. Roncero, C. Tablero, C. Sanz and M. Paniagua, J. Chem. Phys., 2000, 112, 1240]. The computed thermal RPMD and QCT rate coefficients are found to be almost independent of temperature and fall within the range of 1.34-2.01 × 10-9 cm3 s-1. They are also in very good agreement with previous time-independent quantum mechanical and statistical quantum method calculations. Furthermore, we observe that the choice of asymptotic separation distance between the reactants can markedly alter the rate coefficient in the low temperature regime (20-50 K). Therefore it is of utmost importance to correctly assign the value of this parameter for dynamical studies, particularly at very low temperatures of astrochemical importance. We finally conclude that the experimental rate measurements for the title reaction are highly desirable in future.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Chipre

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Chipre