Your browser doesn't support javascript.
loading
The betaboost package-a software tool for modelling bounded outcome variables in potentially high-dimensional epidemiological data.
Mayr, Andreas; Weinhold, Leonie; Hofner, Benjamin; Titze, Stephanie; Gefeller, Olaf; Schmid, Matthias.
Afiliação
  • Mayr A; Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany.
  • Weinhold L; Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany.
  • Hofner B; Section Biostatistics, Paul-Ehrlich-Institut, Langen, Germany.
  • Titze S; Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
  • Gefeller O; Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
  • Schmid M; Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany.
Int J Epidemiol ; 47(5): 1383-1388, 2018 10 01.
Article em En | MEDLINE | ID: mdl-30380092
Motivation: To provide an integrated software environment for model fitting and variable selection in regression models with a bounded outcome variable. Implementation: The proposed modelling framework is implemented in the add-on package betaboost of the statistical software environment R. General features: The betaboost methodology is based on beta-regression, which is a state-of-the-art method for modelling bounded outcome variables. By combining traditional model fitting techniques with recent advances in statistical learning and distributional regression, betaboost allows users to carry out data-driven variable and/or confounder selection in potentially high-dimensional epidemiological data. The software package implements a flexible routine to incorporate linear and non-linear predictor effects in both the mean and the precision parameter (relating inversely to the variance) of a beta-regression model. Availability: The software is hosted publicly at [http://github.com/boost-R/betaboost] and has been published under General Public License (GPL) version 3 or newer.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Software / Análise de Regressão Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Int J Epidemiol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Software / Análise de Regressão Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Int J Epidemiol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Reino Unido