Your browser doesn't support javascript.
loading
Development of a tracer-containing compact-toroid injection system.
Kobayashi, D; Asai, T; Yamada, S; Ishikawa, Y; Tamura, N; Narushima, Y.
Afiliação
  • Kobayashi D; Department of Physics, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan.
  • Asai T; Department of Physics, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan.
  • Yamada S; Department of Physics, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan.
  • Ishikawa Y; Department of Physics, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan.
  • Tamura N; National Institute for Fusion Science, Gifu 509-5292, Japan.
  • Narushima Y; National Institute for Fusion Science, Gifu 509-5292, Japan.
Rev Sci Instrum ; 89(10): 10I111, 2018 Oct.
Article em En | MEDLINE | ID: mdl-30399862
The accumulation and behavior of impurities is one of the most important subjects in the development of magnetically confined fusion reactors because impurities can potentially cause cooling and worsen the confinement of the hot core plasma. Tracer-encapsulated solid pellets (TESPELs) have demonstrated some results for impurity injection for fusion-reactor plasma studies [N. Tamura et al., J. Phys. Conf. Ser. 823, 012003 (2017)]. However, the TESPEL technique has several shortcomings, for example, the penetration depth and the amounts of tracer impurities. In the present study, we have developed a tracer-containing, compact-toroid (TCCT) injection system that utilizes a magnetized coaxial plasma gun (MCPG). The discharge current through the MCPG sputters and ionizes the electrode material, and the Lorenz self-force accelerates it as a plasmoid. The MCPG easily accelerates a magnetized plasmoid to speeds greater than the ion thermal velocity of several tens of kilometers per second. The accelerated and ejected plasmoid that contains the tracer ions is itself a warm, ionized plasma. Therefore, a TCCT can potentially be injected into the core region of a target plasma with less adverse effect.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Japão País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Japão País de publicação: Estados Unidos