Shear-induced damped oscillations in an epithelium depend on actomyosin contraction and E-cadherin cell adhesion.
Elife
; 72018 11 14.
Article
em En
| MEDLINE
| ID: mdl-30427775
Shear forces between cells occur during global changes in multicellular organization during morphogenesis and tissue growth, yet how cells sense shear forces and propagate a response across a tissue is unknown. We found that applying exogenous shear at the midline of an epithelium induced a local, short-term deformation near the shear plane, and a long-term collective oscillatory movement across the epithelium that spread from the shear-plane and gradually dampened. Inhibiting actomyosin contraction or E-cadherin trans-cell adhesion blocked oscillations, whereas stabilizing actin filaments prolonged oscillations. Combining these data with a model of epithelium mechanics supports a mechanism involving the generation of a shear-induced mechanical event at the shear plane which is then relayed across the epithelium by actomyosin contraction linked through E-cadherin. This causes an imbalance of forces in the epithelium, which is gradually dissipated through oscillatory cell movements and actin filament turnover to restore the force balance across the epithelium.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Estresse Mecânico
/
Actomiosina
/
Caderinas
/
Epitélio
Limite:
Animals
Idioma:
En
Revista:
Elife
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Reino Unido