Your browser doesn't support javascript.
loading
Pentacene Crystal Growth on Silica and Layer-Dependent Step-Edge Barrier from Atomistic Simulations.
Roscioni, Otello Maria; D'Avino, Gabriele; Muccioli, Luca; Zannoni, Claudio.
Afiliação
  • Roscioni OM; Dipartimento di Chimica Industriale "Toso Montanari" , University of Bologna , Viale Risorgimento 4 , I-40136 Bologna , Italy.
  • D'Avino G; Institut Néel, CNRS and Grenoble Alpes University , 25 Rue des Martyrs , F-38042 Grenoble , France.
  • Muccioli L; Dipartimento di Chimica Industriale "Toso Montanari" , University of Bologna , Viale Risorgimento 4 , I-40136 Bologna , Italy.
  • Zannoni C; Dipartimento di Chimica Industriale "Toso Montanari" , University of Bologna , Viale Risorgimento 4 , I-40136 Bologna , Italy.
J Phys Chem Lett ; 9(23): 6900-6906, 2018 Dec 06.
Article em En | MEDLINE | ID: mdl-30449102
ABSTRACT
Understanding and controlling the growth of organic crystals deposited from the vapor phase is important for fundamental materials science and necessary for applications in pharmaceutical and organic electronics industries. Here, this process is studied for the paradigmatic case of pentacene on silica by means of a specifically tailored computational approach inspired by the experimental vapor deposition process. This scheme is able to reproduce the early stages of the thin-film formation, characterized by a quasi layer-by-layer growth, thus showcasing its potential as a tool complementary to experimental techniques for investigating organic crystals. Crystalline islands of standing molecules are formed at a critical coverage, as a result of a collective reorientation of disordered aggregates of flat-lying molecules. The growth then proceeds by sequential attachment of molecules at the cluster and then terrace edges. Free-energy calculations allowed us to characterize the step-edge barrier for descending the terraces, a fundamental parameter for growth models for which only indirect experimental measurements are available. The barrier is found to be layer-dependent (approximately 1 kcal/mol for the first monolayer on silica, 2 kcal/mol for the second monolayer) and to extend over a distance comparable with the molecular length.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Chem Lett Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Chem Lett Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Itália