Your browser doesn't support javascript.
loading
Metformin sensitizes cholangiocarcinoma cell to cisplatin-induced cytotoxicity through oxidative stress mediated mitochondrial pathway.
Wandee, Jaroon; Prawan, Auemduan; Senggunprai, Laddawan; Kongpetch, Sarinya; Kukongviriyapan, Veerapol.
Afiliação
  • Wandee J; Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand.
  • Prawan A; Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand.
  • Senggunprai L; Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand.
  • Kongpetch S; Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand.
  • Kukongviriyapan V; Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand. Electronic address: veerapol@kku.ac.th.
Life Sci ; 217: 155-163, 2019 Jan 15.
Article em En | MEDLINE | ID: mdl-30528773
ABSTRACT

AIMS:

Metformin (Met), an essential antidiabetic agent, shows antitumor activity in some cancers. A previous study showed that Met enhanced cytotoxic activity of cisplatin (Cis) in cholangiocarcinoma (CCA) in association with the activation of AMP-activated protein kinase and suppression of Akt-mTOR. However, these effects do not entirely explain the observed chemosensitizing effect. The present study investigated the interaction of Met and Cis over the enhanced antitumor effect. MAIN

METHODS:

KKU-100 and KKU-M156 cells were used in the study. Cytotoxicity was assessed by acridine orange-ethidium bromide staining. Reactive oxygen species (ROS) and mitochondrial transmembrane potential (Δψm) were measured by dihydroethidium and JC-1 fluorescent methods. Cellular glutathione (GSH) and redox ratio were analyzed by enzymatic coupling assay. Proteins associated with antioxidant system and cell death were evaluated by western immunoblot. KEY

FINDINGS:

Cytotoxicity of Cis was enhanced by Met in association with ROS formation and GSH redox stress. The antioxidants, N-acetylcysteine and TEMPOL, and MPTP inhibitor, cyclosporine, attenuated cytotoxicity in association with suppression of ROS formation and the losses of Δψm. Met in combination with Cis suppressed expression of Nrf2 and altered the expression of Bcl2 family proteins.

SIGNIFICANCE:

The chemosensitizing effect of Met in combination with Cis is causally associated with increased oxidative stress-mediated mitochondrial cell death pathway. Met may improve the efficacy of Cis in the treatment of cancer.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias dos Ductos Biliares / Cisplatino / Colangiocarcinoma / Estresse Oxidativo / Hipoglicemiantes / Metformina / Antineoplásicos Limite: Humans Idioma: En Revista: Life Sci Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Tailândia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias dos Ductos Biliares / Cisplatino / Colangiocarcinoma / Estresse Oxidativo / Hipoglicemiantes / Metformina / Antineoplásicos Limite: Humans Idioma: En Revista: Life Sci Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Tailândia
...