A feasibility study of a multimodal stimulation bioreactor for the conditioning of stem cell seeded cardiac patches via electrical impulses and pulsatile perfusion.
Biomed Mater Eng
; 30(1): 37-48, 2019.
Article
em En
| MEDLINE
| ID: mdl-30530957
BACKGROUND/OBJECTIVE: Ischemic heart disease is a major cause of mortality worldwide. Myocardial tissue engineering aims to create transplantable units of myocardium for the treatment of myocardial necrosis caused by ischemic heart disease - bioreactors are used to condition these bioartificial tissues before application. METHODS: Our group developed a multimodal bioreactor consisting of a linear drive motor for pulsatile flow generation (500 ml/min) and an external pacemaker for electrical stimulation (10 mA, 3 V at 60 Hz) using LinMot-Talk Software to synchronize these modes of stimulation. Polyurethane scaffolds were seeded with 0.750 × 106 mesenchymal stem cells from umbilical cord tissue per cm2 and stimulated in our system for 72 h, then evaluated. RESULTS: After conditioning histology showed that the patches consisted of a cell multilayer surviving stimulation without major damage by the multimodal stimulation, scanning electron microscopy showed a confluent cell layer with no cell-cell interspaces visible. No cell viability issues could be identified via Syto9-Propidium Iodide staining. CONCLUSIONS: This bioreactor allows mechanical stimulation via pulsatile flow and electrical stimulation through a pacemaker. Our stem cell-polyurethane constructs displayed survival after conditioning. This system shows feasibility in preliminary tests.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Engenharia Tecidual
/
Miócitos Cardíacos
/
Alicerces Teciduais
/
Células-Tronco Mesenquimais
Limite:
Humans
Idioma:
En
Revista:
Biomed Mater Eng
Assunto da revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Ano de publicação:
2019
Tipo de documento:
Article
País de afiliação:
Alemanha
País de publicação:
Holanda