Your browser doesn't support javascript.
loading
A data augmentation approach for a class of statistical inference problems.
Carvajal, Rodrigo; Orellana, Rafael; Katselis, Dimitrios; Escárate, Pedro; Agüero, Juan Carlos.
Afiliação
  • Carvajal R; Electronics Engineering Department, Universidad Técnica Federico Santa María, Valparaíso, Chile.
  • Orellana R; Electronics Engineering Department, Universidad Técnica Federico Santa María, Valparaíso, Chile.
  • Katselis D; Universidad de Los Andes, Mérida, Venezuela.
  • Escárate P; Coordinated Science Laboratory and Information Trust Institute, University of Illinois, Urbana-Champaign, Illinois, United States of America.
  • Agüero JC; Large Binocular Telescope Observatory, Steward Observatory, University of Arizona, Tucson, AZ, United States of America.
PLoS One ; 13(12): e0208499, 2018.
Article em En | MEDLINE | ID: mdl-30532211
We present an algorithm for a class of statistical inference problems. The main idea is to reformulate the inference problem as an optimization procedure, based on the generation of surrogate (auxiliary) functions. This approach is motivated by the MM algorithm, combined with the systematic and iterative structure of the Expectation-Maximization algorithm. The resulting algorithm can deal with hidden variables in Maximum Likelihood and Maximum a Posteriori estimation problems, Instrumental Variables, Regularized Optimization and Constrained Optimization problems. The advantage of the proposed algorithm is to provide a systematic procedure to build surrogate functions for a class of problems where hidden variables are usually involved. Numerical examples show the benefits of the proposed approach.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Modelos Estatísticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Chile País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Modelos Estatísticos Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Chile País de publicação: Estados Unidos