A data augmentation approach for a class of statistical inference problems.
PLoS One
; 13(12): e0208499, 2018.
Article
em En
| MEDLINE
| ID: mdl-30532211
We present an algorithm for a class of statistical inference problems. The main idea is to reformulate the inference problem as an optimization procedure, based on the generation of surrogate (auxiliary) functions. This approach is motivated by the MM algorithm, combined with the systematic and iterative structure of the Expectation-Maximization algorithm. The resulting algorithm can deal with hidden variables in Maximum Likelihood and Maximum a Posteriori estimation problems, Instrumental Variables, Regularized Optimization and Constrained Optimization problems. The advantage of the proposed algorithm is to provide a systematic procedure to build surrogate functions for a class of problems where hidden variables are usually involved. Numerical examples show the benefits of the proposed approach.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Modelos Estatísticos
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
PLoS One
Assunto da revista:
CIENCIA
/
MEDICINA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Chile
País de publicação:
Estados Unidos