Whole-Cell Photoacoustic Sensor Based on Pigment Relocalization.
ACS Sens
; 4(3): 603-612, 2019 03 22.
Article
em En
| MEDLINE
| ID: mdl-30663315
Photoacoustic (optoacoustic) imaging can extract molecular information with deeper tissue penetration than possible by fluorescence microscopy techniques. However, there is currently still a lack of robust genetically controlled contrast agents and molecular sensors that can dynamically detect biological analytes of interest with photoacoustics. In a biomimetic approach, we took inspiration from cuttlefish who can change their color by relocalizing pigment-filled organelles in so-called chromatophore cells under neurohumoral control. Analogously, we tested the use of melanophore cells from Xenopus laevis, containing compartments (melanosomes) filled with strongly absorbing melanin, as whole-cell sensors for optoacoustic imaging. Our results show that pigment relocalization in these cells, which is dependent on binding of a ligand of interest to a specific G protein-coupled receptor (GPCR), can be monitored in vitro and in vivo using photoacoustic mesoscopy. In addition to changes in the photoacoustic signal amplitudes, we could furthermore detect the melanosome aggregation process by a change in the frequency content of the photoacoustic signals. Using bioinspired engineering, we thus introduce a photoacoustic pigment relocalization sensor (PaPiReS) for molecular photoacoustic imaging of GPCR-mediated signaling molecules.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Pigmentos Biológicos
/
Técnicas Fotoacústicas
Limite:
Animals
Idioma:
En
Revista:
ACS Sens
Ano de publicação:
2019
Tipo de documento:
Article
País de afiliação:
Alemanha
País de publicação:
Estados Unidos