Your browser doesn't support javascript.
loading
Searching for Exoplanets Using a Microresonator Astrocomb.
Suh, Myoung-Gyun; Yi, Xu; Lai, Yu-Hung; Leifer, S; Grudinin, Ivan S; Vasisht, G; Martin, Emily C; Fitzgerald, Michael P; Doppmann, G; Wang, J; Mawet, D; Papp, Scott B; Diddams, Scott A; Beichman, C; Vahala, Kerry.
Afiliação
  • Suh MG; T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA.
  • Yi X; T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA.
  • Lai YH; T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA.
  • Leifer S; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA.
  • Grudinin IS; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA.
  • Vasisht G; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA.
  • Martin EC; Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA.
  • Fitzgerald MP; Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA.
  • Doppmann G; W.M. Keck Observatory, Kamuela, HI 96743, USA.
  • Wang J; Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA.
  • Mawet D; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA.
  • Papp SB; Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA.
  • Diddams SA; National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA.
  • Beichman C; National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA.
  • Vahala K; NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125, USA.
Nat Photonics ; 13: 25-30, 2019.
Article em En | MEDLINE | ID: mdl-30740138
ABSTRACT
Orbiting planets induce a weak radial velocity (RV) shift in the host star that provides a powerful method of planet detection. Importantly, the RV technique provides information about the exoplanet mass, which is unavailable with the complementary technique of transit photometry. However, RV detection of an Earth-like planet in the 'habitable zone'1 requires extreme spectroscopic precision that is only possible using a laser frequency comb (LFC)2. Conventional LFCs require complex filtering steps to be compatible with astronomical spectrographs, but a new chip-based microresonator device, the Kerr soliton microcomb3-8, is an ideal match for astronomical spectrograph resolution and can eliminate these filtering steps. Here, we demonstrate an atomic/molecular line-referenced soliton microcomb as a first in-the-field demonstration of microcombs for calibration of astronomical spectrographs. These devices can ultimately provide LFC systems that would occupy only a few cubic centimetres9,10, thereby greatly expanding implementation of these technologies into remote and mobile environments beyond the research lab.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Photonics Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Photonics Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos