Reversible Nature of Coke Formation on Mo/ZSM-5 Methane Dehydroaromatization Catalysts.
Angew Chem Int Ed Engl
; 58(21): 7068-7072, 2019 May 20.
Article
em En
| MEDLINE
| ID: mdl-30900346
Non-oxidative dehydroaromatization of methane over Mo/ZSM-5 zeolite catalysts is a promising reaction for the direct conversion of abundant natural gas into liquid aromatics. Rapid coking deactivation hinders the practical implementation of this technology. Herein, we show that catalyst productivity can be improved by nearly an order of magnitude by raising the reaction pressure to 15â
bar. The beneficial effect of pressure was found for different Mo/ZSM-5 catalysts and a wide range of reaction temperatures and space velocities. High-pressure operando X-ray absorption spectroscopy demonstrated that the structure of the active Mo-phase was not affected by operation at elevated pressure. Isotope labeling experiments, supported by mass-spectrometry and 13 C nuclear magnetic resonance spectroscopy, indicated the reversible nature of coke formation. The improved performance can be attributed to faster coke hydrogenation at increased pressure, overall resulting in a lower coke selectivity and better utilization of the zeolite micropore space.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Angew Chem Int Ed Engl
Ano de publicação:
2019
Tipo de documento:
Article
País de afiliação:
Holanda
País de publicação:
Alemanha