Your browser doesn't support javascript.
loading
Missense variant in TPI1 (Arg189Gln) causes neurologic deficits through structural changes in the triosephosphate isomerase catalytic site and reduced enzyme levels in vivo.
Roland, Bartholomew P; Richards, Kristen R; Hrizo, Stacy L; Eicher, Samantha; Barile, Zackery J; Chang, Tien-Chien; Savon, Grace; Bianchi, Paola; Fermo, Elisa; Ricerca, Bianca Maria; Tortorolo, Luca; Vockley, Jerry; VanDemark, Andrew P; Palladino, Michael J.
Afiliação
  • Roland BP; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Pharmacology, Vanderbilt Univer
  • Richards KR; Biological Sciences and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
  • Hrizo SL; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Biology, Slippery Rock Universi
  • Eicher S; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
  • Barile ZJ; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
  • Chang TC; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
  • Savon G; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
  • Bianchi P; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UOC Ematologia, UOS Fisiopatologia delle Anemie, Via F Sforza, 35, 20122 Milan, Italy.
  • Fermo E; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, UOC Ematologia, UOS Fisiopatologia delle Anemie, Via F Sforza, 35, 20122 Milan, Italy.
  • Ricerca BM; Hematology Institute, Universitary Hospital A. Gemelli, Largo A. Gemelli 8, 00168 Rome, Italy.
  • Tortorolo L; Pediatric Intensive Care Unit, Universitary Hospital A. Gemelli, Largo A. Gemelli 8, 00168 Rome, Italy.
  • Vockley J; Department of Pediatrics and Human Genetics, University of Pittsburgh Schools of Medicine and Public health, Pittsburgh, PA 15261, USA.
  • VanDemark AP; Biological Sciences and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA. Electronic address: andyv@pitt.edu.
  • Palladino MJ; Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA. Electronic address: mjp44@pitt.edu.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2257-2266, 2019 09 01.
Article em En | MEDLINE | ID: mdl-31075491
ABSTRACT
Mutations in the gene triosephosphate isomerase (TPI) lead to a severe multisystem condition that is characterized by hemolytic anemia, a weakened immune system, and significant neurologic symptoms such as seizures, distal neuropathy, and intellectual disability. No effective therapy is available. Here we report a compound heterozygous patient with a novel TPI pathogenic variant (NM_000365.5c.569G>Ap.(Arg189Gln)) in combination with the common (NM_000365.5c.315G>Cp.(Glu104Asp)) allele. We characterized the novel variant by mutating the homologous Arg in Drosophila using a genomic engineering system, demonstrating that missense mutations at this position cause a strong loss of function. Compound heterozygote animals were generated and exhibit motor behavioural deficits and markedly reduced protein levels. Furthermore, examinations of the TPIArg189Gln/TPIGlu104Asp patient fibroblasts confirmed the reduction of TPI levels, suggesting that Arg189Gln may also affect the stability of the protein. The Arg189 residue participates in two salt bridges on the backside of the TPI enzyme dimer, and we reveal that a mutation at this position alters the coordination of the substrate-binding site and important catalytic residues. Collectively, these data reveal a new human pathogenic variant associated with TPI deficiency, identify the Arg189 salt bridge as critical for organizing the catalytic site of the TPI enzyme, and demonstrates that reduced TPI levels are associated with human TPI deficiency. These findings advance our understanding of the molecular pathogenesis of the disease, and suggest new therapeutic avenues for pre-clinical trials.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Triose-Fosfato Isomerase / Erros Inatos do Metabolismo dos Carboidratos / Anemia Hemolítica Congênita não Esferocítica Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Child, preschool / Female / Humans Idioma: En Revista: Biochim Biophys Acta Mol Basis Dis Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Triose-Fosfato Isomerase / Erros Inatos do Metabolismo dos Carboidratos / Anemia Hemolítica Congênita não Esferocítica Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Child, preschool / Female / Humans Idioma: En Revista: Biochim Biophys Acta Mol Basis Dis Ano de publicação: 2019 Tipo de documento: Article
...