Your browser doesn't support javascript.
loading
Response of the microbial community to the methanogenic performance of biologically hydrolyzed sewage sludge with variable hydraulic retention times.
Mahdy, Ahmed; Wandera, Simon M; Bi, Shaojie; Song, Yunlong; Qiao, Wei; Dong, Renjie.
Afiliação
  • Mahdy A; College of Engineering, China Agricultural University, Beijing 100083, China; Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt.
  • Wandera SM; College of Engineering, China Agricultural University, Beijing 100083, China.
  • Bi S; College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee, Beijing 100083, China.
  • Song Y; College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee, Beijing 100083, China.
  • Qiao W; College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee, Beijing 100083, China.
  • Dong R; College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee, Beijing 100083, China.
Bioresour Technol ; 288: 121581, 2019 Sep.
Article em En | MEDLINE | ID: mdl-31158775
Hyperthermophilic biological hydrolysis of sewage sludge was applied before long-term anaerobic digestion to investigate how shortening hydraulic retention times (HRT, 20-5d) affected methanogenic performances and microbial dynamics. Results indicated that although the three different HRTs provided a stable process with a steady-state of methane production, both methane yield (161 L kg-VSin-1, 25% higher) and volatile solids removal (VS, 50%, 2-fold higher) increased during longer HRTs. Redundancy analysis results indicated that Sporosarcina and Methnosarcina positively correlated to VS removal and methane yield, and negatively correlated to volatile fatty acids (VFAs) accumulation. The relative abundance of Coprothermobacter (>60%), syntrophic acetate oxidation bacteria (SAOB), and Methanospirillum (8-15%), increased during shorter HRTs. A slight shift to two-stage acetate conversion was observed during shorter HRTs. The results demonstrated that HRTs played a key role in shaping microbial structure, leading to a new steady-state of microbial community profiles and process performances at variable HRTs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Euryarchaeota / Microbiota Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Egito País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Euryarchaeota / Microbiota Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Egito País de publicação: Reino Unido