Your browser doesn't support javascript.
loading
Genetic population structure and demography of an apex predator, the tiger shark Galeocerdo cuvier.
Pirog, Agathe; Jaquemet, Sébastien; Ravigné, Virginie; Cliff, Geremy; Clua, Eric; Holmes, Bonnie J; Hussey, Nigel E; Nevill, John E G; Temple, Andrew J; Berggren, Per; Vigliola, Laurent; Magalon, Hélène.
Afiliação
  • Pirog A; UMR ENTROPIE (Université de La Réunion/IRD/CNRS) Université de La Réunion Saint Denis, La Réunion France.
  • Jaquemet S; UMR ENTROPIE (Université de La Réunion/IRD/CNRS) Université de La Réunion Saint Denis, La Réunion France.
  • Ravigné V; UMR PVBMT CIRAD St Pierre, La Réunion France.
  • Cliff G; KwaZulu-Natal Sharks Board Umhlanga Rocks South Africa.
  • Clua E; School of Life Sciences University of KwaZulu-Natal Durban South Africa.
  • Holmes BJ; EPHE-CNRS-UPVD CNRS UPVD USR 3278 CRIOBE PSL Research University Perpignan France.
  • Hussey NE; Laboratoire d'Excellence CORAIL Perpignan France.
  • Nevill JEG; School of Biological Sciences University of Queensland, St Lucia Brisbane Queensland Australia.
  • Temple AJ; Biological Sciences University of Windsor Windsor Ontario Canada.
  • Berggren P; Environment Seychelles Victoria Seychelles.
  • Vigliola L; School of Natural and Environmental Sciences Newcastle University Newcastle-upon-Tyne UK.
  • Magalon H; School of Natural and Environmental Sciences Newcastle University Newcastle-upon-Tyne UK.
Ecol Evol ; 9(10): 5551-5571, 2019 May.
Article em En | MEDLINE | ID: mdl-31160982
ABSTRACT
Population genetics has been increasingly applied to study large sharks over the last decade. Whilst large shark species are often difficult to study with direct methods, improved knowledge is needed for both population management and conservation, especially for species vulnerable to anthropogenic and climatic impacts. The tiger shark, Galeocerdo cuvier, is an apex predator known to play important direct and indirect roles in tropical and subtropical marine ecosystems. While the global and Indo-West Pacific population genetic structure of this species has recently been investigated, questions remain over population structure and demographic history within the western Indian (WIO) and within the western Pacific Oceans (WPO). To address the knowledge gap in tiger shark regional population structures, the genetic diversity of 286 individuals sampled in seven localities was investigated using 27 microsatellite loci and three mitochondrial genes (CR,COI, and cytb). A weak genetic differentiation was observed between the WIO and the WPO, suggesting high genetic connectivity. This result agrees with previous studies and highlights the importance of the pelagic behavior of this species to ensure gene flow. Using approximate Bayesian computation to couple information from both nuclear and mitochondrial markers, evidence of a recent bottleneck in the Holocene (2,000-3,000 years ago) was found, which is the most probable cause for the low genetic diversity observed. A contemporary effective population size as low as 111 [43,369] was estimated during the bottleneck. Together, these results indicate low genetic diversity that may reflect a vulnerable population sensitive to regional pressures. Conservation measures are thus needed to protect a species that is classified as Near Threatened.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Ecol Evol Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Ecol Evol Ano de publicação: 2019 Tipo de documento: Article
...