Three-dimensional GPU-accelerated active contours for automated localization of cells in large images.
PLoS One
; 14(6): e0215843, 2019.
Article
em En
| MEDLINE
| ID: mdl-31173591
Cell segmentation in microscopy is a challenging problem, since cells are often asymmetric and densely packed. Successful cell segmentation algorithms rely identifying seed points, and are highly sensitive to variablility in cell size. In this paper, we present an efficient and highly parallel formulation for symmetric three-dimensional contour evolution that extends previous work on fast two-dimensional snakes. We provide a formulation for optimization on 3D images, as well as a strategy for accelerating computation on consumer graphics hardware. The proposed software takes advantage of Monte-Carlo sampling schemes in order to speed up convergence and reduce thread divergence. Experimental results show that this method provides superior performance for large 2D and 3D cell localization tasks when compared to existing methods on large 3D brain images.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Encéfalo
/
Imageamento Tridimensional
Tipo de estudo:
Health_economic_evaluation
Idioma:
En
Revista:
PLoS One
Assunto da revista:
CIENCIA
/
MEDICINA
Ano de publicação:
2019
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos