Your browser doesn't support javascript.
loading
Three-dimensional GPU-accelerated active contours for automated localization of cells in large images.
Lotfollahi, Mahsa; Berisha, Sebastian; Saadatifard, Leila; Montier, Laura; Ziburkus, Jokubas; Mayerich, David.
Afiliação
  • Lotfollahi M; Department of Electrical and Computer engineering, University of Houston, Houston, TX, United States of America.
  • Berisha S; Department of Electrical and Computer engineering, University of Houston, Houston, TX, United States of America.
  • Saadatifard L; Department of Electrical and Computer engineering, University of Houston, Houston, TX, United States of America.
  • Montier L; Department of Biology and Biochemistry, University of Houston, TX, United States of America.
  • Ziburkus J; Department of Biology and Biochemistry, University of Houston, TX, United States of America.
  • Mayerich D; Department of Electrical and Computer engineering, University of Houston, Houston, TX, United States of America.
PLoS One ; 14(6): e0215843, 2019.
Article em En | MEDLINE | ID: mdl-31173591
Cell segmentation in microscopy is a challenging problem, since cells are often asymmetric and densely packed. Successful cell segmentation algorithms rely identifying seed points, and are highly sensitive to variablility in cell size. In this paper, we present an efficient and highly parallel formulation for symmetric three-dimensional contour evolution that extends previous work on fast two-dimensional snakes. We provide a formulation for optimization on 3D images, as well as a strategy for accelerating computation on consumer graphics hardware. The proposed software takes advantage of Monte-Carlo sampling schemes in order to speed up convergence and reduce thread divergence. Experimental results show that this method provides superior performance for large 2D and 3D cell localization tasks when compared to existing methods on large 3D brain images.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento Tridimensional Tipo de estudo: Health_economic_evaluation Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento Tridimensional Tipo de estudo: Health_economic_evaluation Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos