Your browser doesn't support javascript.
loading
Pilus-1 Backbone Protein RrgB of Streptococcus pneumoniae Binds Collagen I in a Force-Dependent Way.
Becke, Tanja D; Ness, Stefan; Kaufmann, Benedikt K; Hartmann, Bastian; Schilling, Arndt F; Sudhop, Stefanie; Hilleringmann, Markus; Clausen-Schaumann, Hauke.
Afiliação
  • Becke TD; Center for Applied Tissue Engineering and Regenerative Medicine , Munich University of Applied Sciences , 80335 Munich , Germany.
  • Ness S; Center for NanoScience , Ludwig-Maximilians-Universität München , 80799 Munich , Germany.
  • Kaufmann BK; FG Protein Biochemistry and Cellular Microbiology , Munich University of Applied Sciences , 80335 Munich , Germany.
  • Hartmann B; Center for Applied Tissue Engineering and Regenerative Medicine , Munich University of Applied Sciences , 80335 Munich , Germany.
  • Schilling AF; Center for NanoScience , Ludwig-Maximilians-Universität München , 80799 Munich , Germany.
  • Sudhop S; Center for Applied Tissue Engineering and Regenerative Medicine , Munich University of Applied Sciences , 80335 Munich , Germany.
  • Hilleringmann M; Center for NanoScience , Ludwig-Maximilians-Universität München , 80799 Munich , Germany.
  • Clausen-Schaumann H; Clinic for Trauma Surgery, Orthopaedics, and Plastic Surgery , University Medical Center Göttingen , 37075 Göttingen , Germany.
ACS Nano ; 13(6): 7155-7165, 2019 06 25.
Article em En | MEDLINE | ID: mdl-31184856
ABSTRACT
Attachment to host tissue is a prerequisite for successful host colonization and invasion of pathogens. Many pathogenic bacteria use surface appendices, called pili, to bind and firmly attach to host tissue surfaces. Although it has been speculated that the laterally positioned D3 domain of the pilus-1 backbone protein RrgB of Streptococcus pneumoniae may promote bacterial-host interaction, via adhesion to extracellular matrix molecules, such as collagen, earlier studies showed no affinity of RrgB to collagen I. Using atomic force microscopy-based single molecule force spectroscopy combined with lateral force microscopy, we show that under mechanical load, RrgB in fact binds to human collagen I in a force-dependent manner. We observe exceptionally strong interactions, with interaction forces reaching as much as 1500 pN, and we show that high force loading and shearing rates enhance and further strengthen the interaction. In addition, the affinity of RrgB to collagen I under mechanical load not only depends on the orientation of the D3 domain but also on the orientation of the collagen fibrils, relative to the pulling direction. Both exceptionally high binding forces and force-induced bond strengthening resemble the behavior of so-called catch bonds, which have recently been observed in bacterial adhesins, but have not been reported for multimeric backbone subunits of virulence related pili.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistência à Tração / Colágeno Tipo I / Proteínas de Fímbrias Limite: Humans Idioma: En Revista: ACS Nano Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Alemanha País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resistência à Tração / Colágeno Tipo I / Proteínas de Fímbrias Limite: Humans Idioma: En Revista: ACS Nano Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Alemanha País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA