Your browser doesn't support javascript.
loading
Optimization of data acquisition and analysis for fiber ball imaging.
Moss, Hunter G; McKinnon, Emilie T; Glenn, G Russell; Helpern, Joseph A; Jensen, Jens H.
Afiliação
  • Moss HG; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
  • McKinnon ET; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA.
  • Glenn GR; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiologica
  • Helpern JA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiologica
  • Jensen JH; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA. Electronic add
Neuroimage ; 200: 690-703, 2019 10 15.
Article em En | MEDLINE | ID: mdl-31284026
ABSTRACT
The inverse Funk transform of high angular resolution diffusion imaging (HARDI) data provides an estimate for the fiber orientation density function (fODF) in white matter (WM). Since the inverse Funk transform is a straightforward linear transformation, this technique, referred to as fiber ball imaging (FBI), offers a practical means of calculating the fODF that avoids the need for a response function or nonlinear numerical fitting. Nevertheless, the accuracy of FBI depends on both the choice of b-value and the number of diffusion-encoding directions used to acquire the HARDI data. To inform the design of optimal scan protocols for its implementation, FBI predictions are investigated here with in vivo data from healthy adult volunteers acquired at 3 T for b-values spanning 1000 to 10,000 s/mm2, for diffusion-encoding directions varying in number from 30 to 256 and for TE ranging from 90 to 120 ms. Our results suggest b-values above 4000 s/mm2 with at least 64 diffusion-encoding directions are adequate to achieve reasonable accuracy with FBI for calculating axon-specific diffusion measures and for performing WM fiber tractography (WMFT).
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Axônios / Imagem de Difusão por Ressonância Magnética / Neuroimagem / Substância Branca Tipo de estudo: Guideline / Prognostic_studies Limite: Adult / Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Axônios / Imagem de Difusão por Ressonância Magnética / Neuroimagem / Substância Branca Tipo de estudo: Guideline / Prognostic_studies Limite: Adult / Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos