Your browser doesn't support javascript.
loading
Mapping the drivers of within-host pathogen evolution using massive data sets.
Palmer, Duncan S; Turner, Isaac; Fidler, Sarah; Frater, John; Goedhals, Dominique; Goulder, Philip; Huang, Kuan-Hsiang Gary; Oxenius, Annette; Phillips, Rodney; Shapiro, Roger; Vuuren, Cloete van; McLean, Angela R; McVean, Gil.
Afiliação
  • Palmer DS; Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK. duncan.stuart.palmer@gmail.com.
  • Turner I; Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK. duncan.stuart.palmer@gmail.com.
  • Fidler S; Institute for Emerging Infections, The Oxford Martin School, Oxford, OX1 3BD, UK. duncan.stuart.palmer@gmail.com.
  • Frater J; Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.
  • Goedhals D; Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.
  • Goulder P; Division of Medicine, Wright Fleming Institute, Imperial College, London, W2 1PG, UK.
  • Huang KG; Institute for Emerging Infections, The Oxford Martin School, Oxford, OX1 3BD, UK.
  • Oxenius A; Nuffield Department of Clinical Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, OX1 3SY, UK.
  • Phillips R; Oxford NIHR Biomedical Research Centre, Oxford, OX3 7LE, UK.
  • Shapiro R; HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, 4013, South Africa.
  • Vuuren CV; Division of Infectious Diseases, University of the Free State, and 3 Military Hospital, Bloemfontein, 9300, South Africa.
  • McLean AR; Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, OX1 3SY, UK.
  • McVean G; Nuffield Department of Clinical Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, OX1 3SY, UK.
Nat Commun ; 10(1): 3017, 2019 07 09.
Article em En | MEDLINE | ID: mdl-31289267
Differences among hosts, resulting from genetic variation in the immune system or heterogeneity in drug treatment, can impact within-host pathogen evolution. Genetic association studies can potentially identify such interactions. However, extensive and correlated genetic population structure in hosts and pathogens presents a substantial risk of confounding analyses. Moreover, the multiple testing burden of interaction scanning can potentially limit power. We present a Bayesian approach for detecting host influences on pathogen evolution that exploits vast existing data sets of pathogen diversity to improve power and control for stratification. The approach models key processes, including recombination and selection, and identifies regions of the pathogen genome affected by host factors. Our simulations and empirical analysis of drug-induced selection on the HIV-1 genome show that the method recovers known associations and has superior precision-recall characteristics compared to other approaches. We build a high-resolution map of HLA-induced selection in the HIV-1 genome, identifying novel epitope-allele combinations.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: HIV-1 / Evolução Molecular / Interações Hospedeiro-Patógeno / Antígenos HLA / Modelos Genéticos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2019 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: HIV-1 / Evolução Molecular / Interações Hospedeiro-Patógeno / Antígenos HLA / Modelos Genéticos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2019 Tipo de documento: Article País de publicação: Reino Unido