Your browser doesn't support javascript.
loading
Miniature CoCr laser welds under cyclic shear: Fatigue evolution and crack growth.
Kanerva, M; Besharat, Z; Pärnänen, T; Jokinen, J; Honkanen, M; Sarlin, E; Göthelid, M; Schlenzka, D.
Afiliação
  • Kanerva M; Tampere University, Faculty of Engineering and Natural Sciences, P.O.Box 589, FI-33014, Tampere, Finland; Orton Orthopaedic Hospital and Research Institute Orton, FI-00280, Helsinki, Finland. Electronic address: Mikko.Kanerva@tuni.fi.
  • Besharat Z; Royal Institute of Technology, Surface and Corrosion Science, P.O.Box 10044, SE-16440, Stockholm, Sweden.
  • Pärnänen T; Orton Orthopaedic Hospital and Research Institute Orton, FI-00280, Helsinki, Finland.
  • Jokinen J; Tampere University, Faculty of Engineering and Natural Sciences, P.O.Box 589, FI-33014, Tampere, Finland.
  • Honkanen M; Tampere University, Faculty of Engineering and Natural Sciences, P.O.Box 589, FI-33014, Tampere, Finland.
  • Sarlin E; Tampere University, Faculty of Engineering and Natural Sciences, P.O.Box 589, FI-33014, Tampere, Finland.
  • Göthelid M; Royal Institute of Technology, Surface and Corrosion Science, P.O.Box 10044, SE-16440, Stockholm, Sweden.
  • Schlenzka D; Orton Orthopaedic Hospital and Research Institute Orton, FI-00280, Helsinki, Finland.
J Mech Behav Biomed Mater ; 99: 93-103, 2019 11.
Article em En | MEDLINE | ID: mdl-31349149
ABSTRACT
Miniature laser welds with the root depth in the range of 50-300 µm represent air-tight joints between the components in medical devices, such as those in implants, growth rods, stents and various prostheses. The current work focuses on the development of a fatigue test specimen and procedure to determine fatigue lives of shear-loaded laser welds. A cobalt-chromium (CoCr) alloy is used as a benchmark case. S-N graphs, damage process, and fracture surfaces are studied by applying x-ray analysis, atomic force microscopy, and scanning electron microscopy both before and after the crack onset. A non-linear material model is fitted for the CoCr alloy to run finite element simulations of the damage and deformation. As a result, two tensile-loaded specimen designs are established and the performance is compared to that of a traditional torque-loaded specimen. The new generation specimens show less variation in the determined fatigue lives due to well-defined crack onset point and, therefore, precise weld seam load during the experiments. The fatigue damage concentrates to the welded material and the entire weld experiences fatigue prior to the final, fracture-governed failure phase. For the studied weld seams of hardened CoCr, a regression fatigue limit of 10.8-11.8 MPa, where the stress refers to the arithmetic average shear stress computed along the region dominated by shear loading, is determined.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ligas de Cromo / Desenho de Equipamento / Lasers Idioma: En Revista: J Mech Behav Biomed Mater Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ligas de Cromo / Desenho de Equipamento / Lasers Idioma: En Revista: J Mech Behav Biomed Mater Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2019 Tipo de documento: Article