Your browser doesn't support javascript.
loading
Oscillatory surface rheotaxis of swimming E. coli bacteria.
Mathijssen, Arnold J T M; Figueroa-Morales, Nuris; Junot, Gaspard; Clément, Éric; Lindner, Anke; Zöttl, Andreas.
Afiliação
  • Mathijssen AJTM; Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA.
  • Figueroa-Morales N; Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, 1 Keble Road, OX1 3NP, UK.
  • Junot G; PMMH, UMR 7636 CNRS-ESPCI-PSL Research University, Sorbonne University, University Paris Diderot, 7-9 quai Saint-Bernard, 75005, Paris, France.
  • Clément É; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
  • Lindner A; PMMH, UMR 7636 CNRS-ESPCI-PSL Research University, Sorbonne University, University Paris Diderot, 7-9 quai Saint-Bernard, 75005, Paris, France.
  • Zöttl A; PMMH, UMR 7636 CNRS-ESPCI-PSL Research University, Sorbonne University, University Paris Diderot, 7-9 quai Saint-Bernard, 75005, Paris, France.
Nat Commun ; 10(1): 3434, 2019 07 31.
Article em En | MEDLINE | ID: mdl-31366920
Bacterial contamination of biological channels, catheters or water resources is a major threat to public health, which can be amplified by the ability of bacteria to swim upstream. The mechanisms of this 'rheotaxis', the reorientation with respect to flow gradients, are still poorly understood. Here, we follow individual E. coli bacteria swimming at surfaces under shear flow using 3D Lagrangian tracking and fluorescent flagellar labelling. Three transitions are identified with increasing shear rate: Above a first critical shear rate, bacteria shift to swimming upstream. After a second threshold, we report the discovery of an oscillatory rheotaxis. Beyond a third transition, we further observe coexistence of rheotaxis along the positive and negative vorticity directions. A theoretical analysis explains these rheotaxis regimes and predicts the corresponding critical shear rates. Our results shed light on bacterial transport and reveal strategies for contamination prevention, rheotactic cell sorting, and microswimmer navigation in complex flow environments.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Escherichia coli / Hidrodinâmica / Locomoção Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Escherichia coli / Hidrodinâmica / Locomoção Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido