We describe an optical atomic clock based on quantum-logic spectroscopy of the ^{1}S_{0}â^{3}P_{0} transition in ^{27}Al^{+} with a systematic uncertainty of 9.4×10^{-19} and a frequency stability of 1.2×10^{-15}/sqrt[τ]. A ^{25}Mg^{+} ion is simultaneously trapped with the ^{27}Al^{+} ion and used for sympathetic cooling and state readout. Improvements in a new trap have led to reduced secular motion heating, compared to previous ^{27}Al^{+} clocks, enabling clock operation with ion secular motion near the three-dimensional ground state. Operating the clock with a lower trap drive frequency has reduced excess micromotion compared to previous ^{27}Al^{+} clocks. Both of these improvements have led to a reduced time-dilation shift uncertainty. Other systematic uncertainties including those due to blackbody radiation and the second-order Zeeman effect have also been reduced.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Ano de publicação:
2019
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos